Final Exam - FIN3005 Asset Pricing

(Lecturers: Snorre Lindset and Xunhua Su)

Fall, 2014

Make the assumptions you find necessary.

Problem 1 (25\%) In this problem you can use the following relation:

$$
p_{t}=E\left[m_{t+1} x_{t+1}\right] .
$$

Here p_{t} is the time t price of asset with value x_{t+1} at time $t+1, m_{t+1}$ is the time $t+1$ value of the stochastic discount factor, and $E[\cdot]$ is the expectation operator.
a) Find a general expression for the risk-free interest rate R^{f}.

Suppose that changes in consumption can be described by the stochastic differential equation

$$
d c_{t}=\mu c_{t} d t+\sigma c_{t} d z_{t}
$$

where $\mu \operatorname{og} \sigma$ are constants, $c_{0}>0$, and z is a standard Brownian motion.
b) Given c_{t}, show that

$$
c_{t+1}=c_{t} e^{\mu-\frac{1}{2} \sigma^{2}+\sigma z_{t+1}}, \quad z_{t}=0
$$

Let the utility from consumption be given by

$$
u(c)=\frac{c^{1-\gamma}}{1-\gamma}, \quad \gamma>1
$$

Let further

$$
\beta=e^{-\delta}
$$

be the subjective discount factor.
c) Find an expression for the risk-free interest rate $r^{f}=\ln R^{f}$.

Assume the following parameter values: $\delta=0.05, \mu=0.03, \sigma=0.1$, and $\gamma=2$.
d) Determine the numerical value of the risk-free interest rate.
e) Many European countries have real risk-free interest rates close to zero. Find the μ that makes $r^{f}=0$.

Problem $2 \mathbf{(2 5 \%)}$ You are given two returns, R^{i} and R^{j} with $E\left[R^{i}\right] \neq E\left[R^{j}\right]$. Both returns are on the portfolio frontier.
a) Give a short/intuitive explanation for why these two returns can be used to span or synthesize any frontier return.

Let $\rho_{m, R^{k}}$ be the correlation between the stochastic discount factor and some return R^{k}.
b) Using the notation from class and the textbook, show that

$$
E\left[R^{k}\right]=R^{f}-\rho_{m, R^{k}} \frac{\sigma_{m}}{E[m]} \sigma_{R^{k}} .
$$

Let $R^{m v}$ be a frontier return and R^{k} and R^{l} two arbitrary returns.
c) Find the portfolio weight a that is such that

$$
E\left[R^{m v}\right]=a E\left[R^{k}\right]+(1-a) E\left[R^{l}\right]
$$

Problem 3 (16\%) Answer each question with no more than 100 words.
a) Which one of the following statements is inconsistent with the efficient market hypothesis or the rationality of investors? Why?
i. In some Asian markets, stocks with a ticker that ends with 8,88 , or 888 have a higher trading volume than comparable stocks, because the pronunciation of " 8 " is similar to that of "lucky" in these countries.
ii. Peter Lynch (manager of the the Magellan Fund, a mutual fund in the U.S.) was one of the best fund managers in the past century, but he also lost money in many years during his career.
b) The expected returns and variances of three stocks are as follows.

Stock A: r_{A}, σ_{A}^{2}
Stock B: r_{B}, σ_{B}^{2}
Stock C: r_{C}, σ_{C}^{2}
where $r_{A}>r_{B}>r_{C}$ and $0<\sigma_{A}<\sigma_{B}<\sigma_{C}$.
Which one of the following statements is false? Why?
i. For a mean-variance optimizer, stock A is preferred to any portfolio formed using stock B and stock C.
ii. For a mean-variance optimizer investing in only one stock, stock A is preferred to stock B, while stock B is preferred to stock C.

Problem 4 (34\%) Consider a rational agent in a world with two periods, 1 and 2. The agent has initial wealth W in period 1. There are two states in period 2: a "bad" state and a "good" state. The good state occurs with probability 0.5 . The agent is a log-utility optimizer and her expected utility is thus $\log c_{1}+\frac{1}{2} \beta\left[\log c_{g}+\log c_{b}\right]$, where

$$
\begin{aligned}
& \beta-\text { time preference (impatience) } \\
& c_{1}-\text { the consumption in period } 1 \\
& c_{g}-\text { the consumption in the good state of period } 2 \\
& c_{b}-\text { the consumption in the bad state of period } 2 .
\end{aligned}
$$

Suppose that the agent can invest in a risky asset. For $\$ 1$ invested in the risky asset in the first period, the agent will get paid $\$ R_{g}$ in the good state and $\$ R_{b}$ in the bad state of the second period. Assume that $R_{g}>1>R_{b}$.
a) (10%) What is the optimal investment in the asset? What are the optimal consumptions? (You need write down the optimization problem and solve it.)
b) (4\%) How does the optimal investment change when
i. β increases;
ii. R_{g} increases.

Suppose that, in addition to the asset above, the agent can also invest in a risk-free asset. For $\$ 1$ in the risk-free asset, the agent will get $\$ R$ in both states in the second period. Assume that $R_{g}>R \geq 1>R_{b}$. Answer the following questions:
c) (8%) Write down the agent's optimization problem (the objective function and budget constraints). Write down the first-order conditions of the optimization problem.
d) (6%) Let $W=1, \beta=1, R_{g}=1.2, R=1$ and $R_{b}=0.9$. Find the optimal portfolio and the optimal consumptions.
e) (6%) In the above question d), if the agent cannot short sell any of the assets, find the optimal portfolio and the optimal consumptions.

Comments on candidate 10016 in FIN3005 Asset Pricing (Fall 14)

April 15, 2015

Problem 1

a) OK .
b) The candidate here needs to solve the SDE for $d c$ in order to find an expression for c_{t}.
c) Here the candidate makes a (small) mistake. The expression for the SDF is

$$
m_{t+1}=\beta e^{-\gamma\left(\mu-\frac{1}{2} \sigma^{2}\right)-\gamma z_{t+1}}
$$

The expected value of m is

$$
E\left[m_{t+1}\right]=\beta e^{-\gamma\left(\mu-\frac{1}{2} \sigma^{2}\right)+\frac{\gamma^{2}}{2} \sigma^{2}}
$$

Some algebra then gives that

$$
r^{f}=\ln R^{f}=\delta+\gamma \mu-\frac{\gamma}{2}(\gamma-1) \sigma^{2}
$$

d) The right answer is 10%.
e) $\quad \mu=-0.02$.

Problem 2

a) OK, but the candidate could have exploited the fact that any return on the portfolio frontier is perfectly correlated with the SDF. Then any linear combination of returns on the frontier must also be perfectly correlated with the SDF.
b) OK .
c) OK, but the idea was to use the expression derived in problem b). By using this expression for both $E\left[R^{k}\right]$ and $E\left[R^{l}\right]$, a more explicit expression for a can be derived:

$$
a=\frac{E\left[R^{m v}\right]-R^{f}+\rho_{m, R^{l}} \frac{\sigma_{m}}{E[m]} \sigma_{R^{l}}}{\rho_{m, R^{l}} \frac{\sigma_{m}}{E[m]} \sigma_{R^{l}}-\rho_{m, R^{k}} \frac{\sigma_{m}}{E[m]} \sigma_{R^{k}}} .
$$

Problem 3 The candidate answers the problems very well.
Problem 4 The candidate answers the problems very well.

Emmenotodesiswiject FINBOOS

Dane kolonnen er

Problem 1 a)

$$
P_{t}=E\left[M_{t+1} x_{t+1}\right] \quad m_{t+1}=\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}
$$

For the risk free interest rate it costs. R_{f} to get 1\# in the future. Thus, the payoff $x_{t+1}=1$ and

For the risk free interest rate, we have that you can pay $1=P_{t}$ today and get $x_{t+1}=R_{f}$ in payoff at $t+1$. Inserting for this in the equation for pe we get:

$$
1=E\left[m_{t+1} \cdot R_{f}\right]
$$

Since R_{f} is a certain payment, i.e. there is no risk involved we can I remove Re from the expectation operator

$$
1=E\left[m_{t+1}\right] \cdot R_{f}
$$

Solving for R_{f}

$$
\frac{1}{r_{p}}=E\left[m_{t+1}\right]
$$

$$
R_{f}=\frac{1}{E\left[m_{t+1}\right]}
$$

Problem $1 c$)

$$
\begin{aligned}
& u(c)=\frac{c^{1-\gamma}}{1-\gamma} \quad \gamma>1 \quad \beta=e^{-\gamma} \quad u^{\prime}(c)=c^{-\gamma} \\
& c_{t+1}=c_{t} e^{\mu-\frac{1}{2} \sigma^{2}+\sigma z_{t+1}}
\end{aligned}
$$

we want to find $r^{f}=\ln R^{f}$

$$
\begin{aligned}
& E\left[c_{t}\right]=C_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t \sigma z_{t+1}} \\
& E\left[c_{t+1}\right]=C_{t} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right)+\sigma z_{t+1}} \\
& R_{t}=\frac{1}{E\left[M_{t+1}\right]} \quad M_{t+1}=\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} \\
& u^{\prime}\left(c_{t+1}\right)=\left(C_{t} e^{\left.\left(\mu-\frac{1}{2} \sigma^{2}\right) e^{+}+z_{t+1}\right)^{-\gamma}}\right. \\
& u^{\prime}\left(c_{t+1}\right)=C_{t} e^{-\gamma\left(\mu+\frac{1}{2} \sigma^{2}\right)} \quad z_{t}=0 \\
& u^{\prime}\left(c_{t}\right)=\left(C_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t}\right)^{-\gamma} \\
& u^{\prime}\left(c_{t}\right)=C_{0} e^{-\gamma\left(\mu-\frac{1}{2} \sigma^{2}\right) t} \\
& \beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}=\frac{C_{0} e^{-\gamma\left(\mu+\frac{1}{2} \sigma^{2}\right) t} e^{-\gamma\left(\mu+\frac{1}{2} \sigma^{2}\right)}}{C_{0} e^{-\gamma\left(\mu+\frac{1}{2} \sigma^{2}\right) t}} e^{-\gamma} \\
& \beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}=e^{-\gamma\left(\mu+\frac{1}{2} \sigma^{2}\right)} e^{-\gamma}=e^{-\gamma\left(\mu+\frac{1}{2} \sigma^{2}\right)-\delta}
\end{aligned}
$$

Using the rule for taking the expectation of a los normal variable:

$$
\begin{aligned}
& \operatorname{los} \text { nomad variabu: } \\
& E\left[\frac{\beta u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right]=E\left[m_{t+1}\right]=e^{-\gamma^{2} \mu+\frac{1}{2} \gamma^{2} \sigma^{2}-\delta} \\
& R_{f}=\frac{1}{E\left[m_{t+1}\right]}=\left(e^{-\gamma^{2} \mu+\frac{1}{2} \gamma^{2} \sigma^{2}+\delta^{-1}}=e^{-\gamma^{2} \mu+\frac{1}{2} \gamma^{2} \sigma^{2}+\delta}\right. \\
& \ln R_{f}=\ln e^{-\gamma^{2} \mu-\frac{1}{2} \gamma^{2} \sigma^{2}+\delta}=\gamma^{2} \mu-\frac{1}{2} \gamma^{2} \sigma^{2}+\delta
\end{aligned}
$$

\qquad 16

Denne kolonnen er forbeholdt sensor This column is for external examiner

Problem 1d)

in problen 1c) I fand that r_{f} :
$r_{f}=\gamma \mu-\frac{1}{2} \gamma^{2} \sigma^{2}+\delta$
pre $=\gamma^{2} \mu-\frac{1}{2} \gamma^{2} \sigma^{2}+\delta \Rightarrow \gamma^{2}$
Insecting for the numbes from the assignment:
$r_{f}=2^{2} \cdot 0.03-\frac{1}{2} \cdot 2^{2} \cdot 0.1^{2}+0.05=0.09$.

Using the model derived in 1c) i get $r_{f}=0.09$.
\qquad

Dane kolonnen er forbeholdt sensor
This column is for external examiner

Problem le)
We want to finder μ so that $r_{A}=0$

$$
\begin{aligned}
& 0=2^{2} \mu-\frac{1}{2} \cdot 2^{2} \cdot 0.1^{2}+0.05 \\
& 0=2 \mu-2 \cdot 0.01+0.05 \\
& 0=2 \mu-0.03 \\
& 2 \mu=0.03 \\
& \mu=0.015=1.5 \%
\end{aligned}
$$

For the risk free interest rate to be equal to zero, μ has to be 0015.
© NTNU

Dine kolonnen er

Problem 2a)
R^{i} and $R^{j} \quad E\left[R^{i}\right] \neq E\left[R^{j}\right]$
The portfolio frontier is the hyporbola in the σ^{e}, μ axiomatic space where all efficient iAvestriens lie. Efficient invest An efficient portfolio is a portfolio for which you cannot get a higher expected return without also increasing risk or variance.

In this assign Assuming that both R^{i} and R^{\prime} are return on portfolios macle up of an arbitrary in the market

Assuming we have
If we have complete markets and R^{i} and R^{j} are returns on pooffotios two different portfolios that inclucle all the asset in the mart but with different weights. Then we know that all portfolios-combinations of two asset will be on the frontier. We can therefore use R^{i} and R ! to synthesize all returns on the frontier beccuve the frontier will be made up of combinations of R^{i} and R^{\prime} with different portedio weights
© NTNU

We want to snow that

$$
E\left[R^{k}\right]=R^{f}-P_{m, R} \frac{\sigma_{m}}{E[m]} \sigma_{R k}
$$

we know that, the basic pricing equation is given by

$$
P_{t}=E\left[x_{t+1} m_{t+1}\right] \quad M_{t+1}=r_{1}
$$

For the asset $k, x_{t+1}=R_{k}$, therefore we have that

$$
P_{t}=E\left[R^{k} m\right]
$$

The covariance identity says that

$$
\begin{aligned}
E\left[R^{k} m\right] & =E\left[R^{k}\right] E[m]+\rho_{m_{1} R_{k}} \sigma_{R_{k}} \sigma_{m} \\
P_{t} & =E\left[R^{k}\right] E[m]+\rho_{m 1} R_{k} \sigma_{R_{k}} \sigma_{m} \quad 1: E[m] \\
\frac{P_{t}}{E[m]} & =E\left[R_{k}\right]+e_{m R_{k}} \frac{\sigma_{m}}{E[m]} \sigma_{R_{k}}
\end{aligned}
$$

$E\left[R^{k}\right] E[m] 13 \mathrm{w}$ hat the asset would cost if in were nile free. Therefore $\frac{P_{t}}{t[m]}=R^{f}$

$$
R^{f}=E\left[R^{k}\right]+\rho_{m, R} \frac{\sigma_{M}}{E[M]} \sigma_{R}
$$

Thus we have that

$$
E\left[R^{R}\right]=R^{f}-\rho m_{1} R_{k} \frac{\sigma_{m}}{E[m]} \sigma_{R k}
$$

This is the portfolio frontier.
© NTNU

Emnekode/Subject
FINJOOS
problem Rc)
we want find a such that a combination for R^{k} and R^{2} will be on the portfolio frontier.
we know that

$$
E\left[\mathbb{R}^{k a v}\right]=R^{f}-P_{M_{1}} R_{k} \frac{\sigma_{m}}{E[m]} \sigma_{R k i v}
$$

Thu $E\left[R^{k}\right]$ will be given by

Inserting for $E[R k]$ and $E\left[R^{L}\right]$ and solving for as $E\left[R^{m v}\right]=a_{B}\left(R_{f}-\rho_{m} R_{k} \frac{\sigma_{m}}{t[m]} \sigma_{R_{k}}\right)+(1-a)\left(R_{F} \rho_{m} R_{i} \frac{\sigma_{m}}{E[m]} \sigma_{R_{1}}\right)$ $E\left[R_{m v}\right]=a$

$$
\begin{aligned}
E\left[R^{m v}\right]=a E\left[R^{k}\right] & +E\left[R^{l}\right]-a E\left[R^{\prime}\right] \\
a\left(E\left[R^{k}\right]-E\left[R^{\prime}\right]\right)= & E\left[R^{m v}\right]+E\left[R^{L}\right] \\
a & =\frac{E\left[R^{m v}\right]+E\left[R^{L}\right]}{E\left[R^{k}\right]-E\left[R^{\prime}\right]}
\end{aligned}
$$

Dane kolonnen er forbeholdt sensor

This column is for external examiner

Problem Ba)
The efficient market hypothesis (E MH1) states that in financial markets, prices reflect all available information so that protlits can only be made from publicly available information statement i) is in consistent with the EMH and rationality of investors because it implies the existence of noise tracker. Buying an security becoulse of it ticker symbol means that you are not buying it because of its fundamental value. This implies that the investors are irrational. If there are limits to arbitrage in the market, statement ir) B also inconsistent with EMt 1 as well as rationality of investors
\qquad

Dine kolonnen er

This column is for external examiner

Problem 3b)
statement i) is false. The variance covariance of portfolio with two stocks is given by the following formula

$$
\sigma_{P}^{2}=x_{B B}^{2} \sigma_{D}^{2}+x_{C}^{2} \sigma_{C}^{2}+2 x_{B} x_{B} \sigma_{B} \sigma_{C} \rho_{B C}
$$

Thus, we can see that the risk or variance of the portfolio clepends on the correlation between the two stocks. A mean-variance optimizer will choose the portfolio with the lowest variance for a given return. Dy forming a portfolio of stock B and C_{1} the investor might be able to create a port folio with $\sigma_{p}<\sigma_{p}$. Given the investors chosen level of return and risk aversion, he may prefer this porto the portfolio of stock Bardic. with the lourcot return to a portfolio of stock A.

Dane kolonnen er

Problem 4 a)
The investor will want to maximize expected utility given a budget constraint

$$
\max _{c_{11} c_{51} c_{y}} \log c_{1}+0.5 B \log c_{g}+0.5 B \log c_{y}
$$

$$
\text { s.t } c_{1}+c_{S}+c_{b} \leq w
$$

$$
c_{1}=w-x
$$

$$
c_{g}=x R_{g}
$$

$$
c_{D}=x R_{b}
$$

To solve this problem I Insert for c_{1}, c_{5} andes in the objective function.

$$
\max _{x} \log (w-x)+0.58 \log \left(x R_{g}\right)+0.5 B \log \left(x R_{b}\right)
$$

F.O.C

$$
\frac{\partial}{\partial x}=-\frac{1}{\omega-x}+\frac{0.5 B R_{S}}{x R_{S}}+\frac{0.5 B R_{D}}{x R_{\phi}}=0
$$

Solve for x :

$$
\begin{aligned}
-\frac{1}{\omega-x}+\frac{\beta}{x} & =0 \\
\frac{\beta}{x} & =\frac{1}{\omega-x} \\
\beta & =\frac{x}{\omega-x} \\
\beta \omega-\beta x & =x \\
\beta \omega & =x(1+\beta) \\
x & =\omega \cdot \frac{\beta}{1+\beta}
\end{aligned}
$$

To find optimal consumptions, insert for x in C_{1}, C_{b} and c_{s} :

$$
C_{1}^{*}=\omega-\frac{\omega \beta}{1+\beta}=\omega\left(1-\frac{\beta}{1+\beta}\right)=\omega\left(\frac{1+\beta}{1+\beta}-\frac{\beta}{1+\beta}\right)=\omega \cdot \frac{1}{1+\beta}
$$

\qquad 16

Dane kolonnen er external examiner

Problem Ua) continued.

$$
\begin{aligned}
& c_{S}^{\alpha}=x R_{S}=\frac{\omega \cdot B \cdot R_{S}}{1+B}=\frac{R g B \omega}{1+B} \\
& c_{0}^{*}=x R_{b}=\frac{R_{D} B \omega}{1+B}
\end{aligned}
$$

To sum up, the optimal investment in the asset is $x=\frac{\beta}{1+\beta} \cdot \omega$

The optimal conoumptions are

$$
C_{1}^{*}=\omega \cdot \frac{1}{1+\beta} \quad C_{5}^{\top}=\frac{\beta R_{g} \omega}{1+\beta} \quad C_{b}^{A}=\frac{R_{b} B \omega}{1+\beta}
$$

hreotment is inclepent in x is inclepenclent of future expected returns. There fore this shows that with the given probabilities and utility function, the investor is myopic.
\qquad

Dine kolonnen er forbeholdt sensor
This column is for external examiner
\qquad

Problem 4 b)
i) β is the time preference of the investor or his impatience, we con see for the expression for x That if β increases then the investment in the asset will also increase.
\qquad
\qquad
ii) If R_{g} increases, the investment in x will stay the same. Investment in x docs not depend on expected return. This means that the investor is myopic.
\qquad
© NTNU

Problem $4 c$)

$$
R_{g} \geqslant R \geqslant 1>R_{b}
$$

In essence, the investor is still faced with the same maximization problen as previously stated

$$
\max _{c_{1, c}, c_{b}} \log c_{1}+0.5\left(\log c_{s}+0.5 \beta \log c_{s}\right.
$$

$$
\text { sit } c_{1}+c_{g}+c_{b} \leq w
$$

should be
However, now the consumptions be rewritten a)
$c_{1}=\omega-x-y$ where x is amount invested in risky
$c_{S}=R_{g} x+R_{f y} \quad$ asset and y is amount involved in
$C_{b}=R_{b} x+R_{y}$ rok fire asset

Inserting for C_{1}, C_{D} and C_{g} in the objective function, the maximization problem then is

$$
\max _{x_{1} y} \log (\omega-x-y)+0.5 \beta \log \left(R_{g} x+R_{y}\right)+0.5 \beta \log \left(R_{b} x+R_{y}\right)
$$

F.O.C

1) $\frac{\partial}{\partial x}=-\frac{1}{\omega-x-y}+\frac{0.5 B R_{g}}{R_{g} x+R_{y}}+\frac{0.5 B R_{b}}{R_{b} x+R_{y}}=0$
2) $\frac{\partial}{\partial y}=-\frac{1}{\omega-x-y}+\frac{0.5 B R}{R_{S} x+R y}+\frac{0.5 \beta R}{R_{b} x+R y}$
© NTNU

Probley $4 d$)

$$
W=1 \quad B=1 \quad R_{S}=1.2 \quad R=1 \quad R_{b}=0.9
$$

Injeting for w_{1}, B, R_{S}, R and R_{b} in F.O.C. 1) and solving torex setting the tho FOC's equal to each oth

$$
1+2) \frac{1}{1-x-y}+\frac{0.6}{1.2 x+y}+\frac{0.45}{0.9 x+y}=-\frac{1}{1-x-y}+\frac{0.5}{1.2 x+y}+\frac{0.5}{0.9 x+y}
$$

$$
\frac{0.6}{1.2 x+y}+\frac{0.45}{0.9 x+y}=\frac{0.5}{1.2 x+y}+\frac{0.5}{0.9 x+y}
$$

$$
\frac{0.1}{1.2 x+y}=\frac{0.05}{0.9 x+y}
$$

$$
0.1(0.9 x+y)=0.05(1.2 x+y)
$$

$$
0.09 x+0.1 y=0.06 x+0.05 y
$$

$$
1-0.06 x-0.1 y
$$

$$
0.03 x=-0.05 y
$$

$$
x=-1.667 y=\frac{-5}{3} y
$$

inserting for x in F.O.C 1)

$$
\begin{aligned}
& -\frac{1}{1-(-1.667) y-x}+\frac{0.6}{1.2(-1.667 y)+y}+\frac{0.45}{0.9(-1.667 y)+y}=0 \\
& -\frac{1}{1+0.667 y}+\frac{0.6}{-2 y+y}+\frac{0.45}{-1.5 y+y}=0 \\
& -\frac{1}{1+0.6667 x}+\frac{0.6}{-y}+\frac{0.45}{-0.5 y}=0 \\
& \frac{1.5}{-y}=\frac{1}{1+0.6667 y} \\
& \begin{array}{l}
1.5(1+0.6667 y)=-y \quad 1-y \\
1.5+y=-y \quad-2 y=1.5 \quad \\
y=-0.75 \quad x=-\frac{5}{3}(-0.75)=1.25
\end{array}
\end{aligned}
$$

Kandidat nr/Candidale no. 10016

Dato/Date: $16.12,14$
 Side/Page:

Denne kolonnen er forbeholdt sensor
This column is for external examiner

Problen $4 d$) continued.
$y=-0.75 \quad x=1.25$
$C_{1}^{*}=1-1.25-(-0.75)=1-1.25+0.75=0.5$
$C_{g}^{*}=R_{s} x+R_{y}=1.2(1.25)+1 \cdot(-0.75)=0.75$
$c_{b}^{k}=R_{b} x+R_{y}=0.9(1.25)+1 .(-0.75)=0.375$

The optinal portfolio is to borrow -0.75 and inve of 1.25 in the noxy asset. This leads to a $C_{1}^{\alpha}=0.5, C_{S}^{*}=0.75$ and $C_{b}^{A}=0.375$
© NTNU

Dine kolonnen er

Problem ye)
The restriction her is that $y \geqslant 0$ Relative risk avesion is given by θ

$$
\text { RRA }=-c \frac{u^{\prime \prime}(c)}{u^{\prime}(c)}
$$

$$
\begin{aligned}
& u^{\prime}(c)= \frac{1}{c} \\
& u^{\prime \prime}(c)=-c^{-2} \\
& \operatorname{RRA}=-c \cdot\left(\frac{-c^{-2}}{\left(c^{-1}\right)}\right)=-c\left(-\frac{1}{c}\right)=1
\end{aligned}
$$

Given that the utility function implies constant relative risk aveoien, the investor will choose the investment with the highest expected return. Since the risky invormert has a higher expected return than the nil free (1.05 to 1) the inverter will invest of everything in x

The optimal consumptions and x are therefore gives by problem la)

$$
\begin{aligned}
& x=\frac{1}{1+1} \cdot 1=\frac{1}{2} \\
& c_{s}^{*}=\frac{1}{2} \quad c_{y}=\frac{1.2}{2}=0.6 \quad c_{b}=0.45
\end{aligned}
$$

However my reasoning does not seen to make sense she er c_{j}^{*} and c_{0}^{*}

