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IF400 – Financial Derivatives 

Erwin Hammer, H19-V20 

Notatark skrevet for emnet IF400 – Finansielle instrumenter. Notatarket her er omfattende og 

dekker anslagsvis 95% av pensumet. Kapittel 1 til 6 er gjennomgått i større detalj med flere 

utledninger enn det som er gitt i forelesninger og i læreboken. Fra kapittel 7 og utover har jeg 

heller forsøkt å komprimere stoffet til det aller viktigste. Ellers følger notasjonen i stor grad 

læreboken «Derivatives Markets» av McDonald.  
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Chapter 1: Fixed Income 

Bonds 

Consider a bond with a coupon payment of 𝑐𝑖  in 𝑡𝑖  years where 𝑖 = 1,… , 𝑛. If the bond is 

compounded 𝑘 times per year, the bond price becomes 

𝑃 =∑
𝑐𝑖/𝑘

(1 + 𝑦/𝑘)𝑘𝑡𝑖

𝑛

𝑖=1

+
𝐹

(1 + 𝑦/𝑘)𝑘𝑛
 

The parameter 𝑦 is the bond’s yield to maturity or simply the yield. This is the interest rate 

on the bond that corresponds with the price 𝑃 given the coupon payments 𝑐𝑖 .  

A common convention is to use continuous compounding. This occurs when 𝑘 → ∞. Then, 

the price becomes  

𝑃 =∑𝑐𝑖𝑒
−𝑦𝑡𝑖

𝑛

𝑖=1

+ 𝐹𝑒−𝑦𝑛 

We can use zero-coupon bonds as an alternative way to price coupon bearing bonds. Let 

𝑟(𝑘)(0, 𝑡) be the yield on a zero-coupon bond with lifetime [0, 𝑡] that is compounded 𝑘 times 

annually. The price of a zero-coupon bond with a face value of 𝐹 is then 

𝑃(0, 𝑡) =
𝐹

(1 + 𝑟(𝑘)(0, 𝑡))
𝑘𝑡 

Suppose 𝐹 = 1. Then the price formula can be written in terms of the zero-coupon rate 

𝑟(𝑘)(𝑡) = 𝑘 (𝑃(0, 𝑡)−
1
𝑘𝑡 − 1) 

As we can see, the zero-coupon rates can be converted to different compounding 

frequencies. That is, it is possible to find 𝑟(𝑠)(𝑡) given 𝑟(𝑘)(𝑡). Under continuous 

compounding where 𝑘 → ∞, we get 

𝑟(∞)(𝑡) = −
1

𝑡
ln(𝑃(0, 𝑡)) 

The sequence {𝑟(𝑘)(𝑡)|𝑡 ≥ 0} is called the yield curve. It is typically upward-sloping.  
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Forward Rates 

Consider a period [𝑡1, 𝑡2]. The forward rate 𝑓(𝑡1, 𝑡2) is the rate that we can lock in today 

for borrowing and lending over the period [𝑡1, 𝑡2]. Since this is also an interest rate, we must 

decide on a compounding frequency.  

Assume now that we have continuous compounding. For each 1 borrowed at time 𝑡1, the 

amount that must be paid back at time 𝑡2 is  

𝑒𝑓(𝑡1,𝑡2)(𝑡2−𝑡1) 

It is possible to derive an expression for the forward rate. We will consider the following 

strategy 

• Purchase one 𝑡1 maturity zero-coupon bond 

• Short 
𝑃(0,𝑡1)

𝑃(0,𝑡2)
 zero-coupon bonds with maturity 𝑡2 

Transaction 𝑡 = 0 𝑡 = 𝑡1 𝑡 = 𝑡2 

Purchase 𝑡1 

bond 

−𝑃(0, 𝑡1) 1 − 

Short 𝑡2 bond 𝑃(0, 𝑡1)

𝑃(0, 𝑡2)
⋅ 𝑃(0, 𝑡2) 

0 
−
𝑃(0, 𝑡1)

𝑃(0, 𝑡2)
⋅ 1 

Total 0 1 
−
𝑃(0, 𝑡1)

𝑃(0, 𝑡2)
 

 

This is equivalent to borrowing 1 at 𝑡1 with a repayment of 
𝑃(0,𝑡1)

𝑃(0,𝑡2)
 at 𝑡2. Therefore,  

𝑒𝑓(𝑡1,𝑡2)(𝑡2−𝑡1) =
𝑃(0, 𝑡1)

𝑃(0, 𝑡2)
 

Solving for the forward rate 

𝑓(𝑡1, 𝑡2) =
ln 𝑃(0, 𝑡1) − ln 𝑑(𝑡2)

𝑡2 − 𝑡1
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Since ln 𝑃(0, 𝑡) = −𝑡𝑟(0, 𝑡) under continuous compounding, we can rewrite the forward 

rate equation as 

𝑓(𝑡1, 𝑡2) =
𝑡2𝑟(0, 𝑡2) − 𝑡1𝑟(0, 𝑡1)

𝑡2 − 𝑡1
 

We can also derive this relationship for other compounding frequencies. In this case, the 

forward rate becomes 

𝑓(𝑡1, 𝑡2) = 𝑘 [(
𝑃(0, 𝑡1)

𝑃(0, 𝑡2)
)

1
𝑘(𝑡2−𝑡1)

− 1] 

The forward rate can be used to price zero-coupon bonds that are issued at a later point in 

time. Suppose we want to find the time 0 price for a zero-coupon bond that is issued at time 

𝑡1 with maturity 𝑡2 with annual compounding 𝑘 = 1. Then 

𝑃0(𝑡1, 𝑡2) =
1

(1 + 𝑓(𝑡1, 𝑡2))
𝑡2−𝑡1

 

Using the no-arbitrage relationship  

(1 + 𝑟(0, 𝑡1))
𝑡1
⋅ (1 + 𝑓(𝑡1, 𝑡2))

𝑡2−𝑡1
= (1 + 𝑟(0, 𝑡2))

𝑡2
 

We can write the forward rate expression as 

(1 + 𝑓(𝑡1, 𝑡2))
𝑡2−𝑡1

=
(1 + 𝑟(0, 𝑡2))

𝑡2

(1 + 𝑟(0, 𝑡1))
𝑡1

 

(1 + 𝑓(𝑡1, 𝑡2))
𝑡2−𝑡1

=
𝑃(0, 𝑡1)

𝑃(0, 𝑡2)
 

Then the time 0 price can be written as 

𝑃0(𝑡1, 𝑡2) =
𝑃(0, 𝑡2)

𝑃(0, 𝑡1)
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Given the price of zero-coupon bonds it is possible to price coupon bonds. Let 𝐵𝑡(𝑡, 𝑇, 𝑐, 𝑛) 

be the time 𝑡 price of a bond that issued at time 𝑡 with maturity 𝑇. Let 𝑐 be the coupon rate, 

that is, 𝐶 = 𝑐𝐹. Finally, let 𝑛 denote the number of payments. We have the relationship 

𝐵𝑡(𝑡, 𝑇, 𝑐, 𝑛) =∑𝑐𝑃𝑡(𝑡, 𝑡𝑖) + 𝐹 ⋅ 𝑃𝑡(𝑡, 𝑇)

𝑛

𝑖=1

 

Solving for the coupon rate gives 

𝑐 =
𝐵𝑡(𝑡, 𝑇, 𝑐, 𝑛) − 𝐹 ⋅ 𝑃𝑡(𝑡, 𝑇)

∑ 𝑃𝑡(𝑡, 𝑡𝑖)
𝑛
𝑖=1

 

The par coupon is the coupon rate which ensures that the bond price is equal to the face 

value. Then, the par coupon can be found by the following 

𝑐 = 𝐹 (
1 − 𝑃𝑡(𝑡, 𝑇)

∑ 𝑃𝑡(𝑡, 𝑡𝑖)
𝑛
𝑖=1

) 

A common convention is to assume that 𝐹 = 1, then  

𝑐 = (
1 − 𝑃𝑡(𝑡, 𝑇)

∑ 𝑃𝑡(𝑡, 𝑡𝑖)
𝑛
𝑖=1

) 

Duration and Immunization 

Bond prices are subject to interest rate risk. When the bond yield changes, so does the price 

of the bond. Suppose we have a bond that makes 𝑚 coupon payments annually for 𝑇 years 

with a face value of 𝐹. The per-period yield is then 𝑦/𝑚 with 𝑦 as the annualized yield to 

maturity. Then, the number of periods until maturity is 𝑛 = 𝑚 ⋅ 𝑇. The price of this bond 

becomes 

𝐵(𝑦) =∑
𝐶/𝑚

(1 + 𝑦/𝑚)𝑖

𝑇

𝑖=1

+
𝐹

(1 + 𝑦/𝑘)𝑛
 

 

 



8 
 

The dollar change of the price when the yield increases by 1 is its partial derivative with 

respect to the yield 

Δ𝐵

Δ𝑦
=
𝜕𝐵

𝜕𝑦
= −

1

1 +
𝑦
𝑚

(∑
𝑖

𝑚
⋅
𝐶/𝑚

(1 +
𝑦
𝑚
)
𝑖

𝑇

𝑖=1

+
𝑛

𝑚
⋅

𝐹

(1 +
𝑦
𝑚
)
𝑛) 

To get the change in percentage points, we can divide this derivative by 100. Another 

method for measuring interest rate risk is using the modified duration, which gives the 

percentage change in the bond price for a unit change in the yield. This measure is more 

useful as it allows us to compare interest rate risk for different bonds. The modified duration 

can be expressed as  

𝐷𝑀𝑂𝐷 = −
1

𝐵
(
Δ𝐵

Δ𝑦
) 

Since bond prices fall when the yield increases, we multiply the price change by −1 to get 

the percentage change in absolute terms. Another measure of bond price risk is the 

Macauley duration, which is given as 

𝐷𝑀𝐴𝐶 = 𝐷𝑀𝑂𝐷 (1 +
𝑦

𝑚
) 

For simplicity, suppose 𝑚 = 1. Then,  

𝐷𝑀𝐴𝐶 = −
Δ𝐵

𝐵
⋅
1 + 𝑦

Δ𝑦
 

𝐷𝑀𝐴𝐶 =
1

𝐵(𝑦)
(∑

𝑖

𝑚
⋅
𝐶/𝑚

(1 +
𝑦
𝑚
)
𝑖

𝑇

𝑖=1

+
𝑛

𝑚
⋅

𝐹

(1 +
𝑦
𝑚
)
𝑛) 

This measure has a meaningful interpretation. It is a weighted average of the time until the 

bond payments occur. Macaulay duration is useful because it can provide a way of 

measuring risk for bonds that differ in maturities and number of payments. A change in the 

yield will have a larger effect on bonds with long maturities because the change in the 

payments are greater ahead in time.  

We can use a Taylor series approximation to derive the sensitivity of the bond price. Recall 

that the first order approximation of a function 𝑓(𝑥) is  
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𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓
′(𝑥0)(𝑥 − 𝑥0) 

Let 𝑓(𝑥0) = 𝐵(𝑦) and 𝑥 = 𝑦 + 𝜖 where 𝜖 is a small number. Then 

𝐵(𝑦 + 𝜖) ≈ 𝐵(𝑦) + 𝐵′(𝑦)𝜖 

Then the change in price is  

𝐵(𝑦 + 𝜖) − 𝐵(𝑦) ≈ 𝐵′(𝑦)𝜖 

Δ𝐵 ≈ 𝐵′(𝑦)𝜖 

Observe that  

𝐷𝑀𝐴𝐶 = −
Δ𝐵

𝐵(𝑦)
⋅
1 + 𝑦

Δ𝑦
 

𝐷𝑀𝐴𝐶 = −𝐵′(𝑦) ⋅
1 + 𝑦

𝐵(𝑦)
 

𝐵′(𝑦) = −
𝐵(𝑦)𝐷𝑀𝐴𝐶

1 + 𝑦
 

Then  

Δ𝐵 ≈ −
𝐵(𝑦)𝐷𝑀𝐴𝐶

1 + 𝑦
𝜖 

𝐷𝑀𝐴𝐶 ≈
Δ𝐵

𝜖
⋅
1 + 𝑦

𝐵(𝑦)
 

Suppose now that we wish to create a bond portfolio that hedges against shifts in the yield. 

This hedging strategy is called immunization or duration matching. Consider the two-asset 

bond portfolio  

𝑃 = 𝐵1 + 𝑁𝐵2 

We want to find which position we want to take in the second bond to hedge against interest 

rate risk. The hedge requires that the price change following a change in the yield of 𝜖  

Δ𝑃 = 0 

Therefore,  
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Δ𝐵1 + 𝑁Δ𝐵2 = 0 

𝑁 = −
Δ𝐵1
Δ𝐵2

 

Using the approximation for the price change gives 

𝑁 ≈ −
−
𝐵1(𝑦1)𝐷1

𝑀𝐴𝐶

1 + 𝑦1
𝜖

−
𝐵2(𝑦2)𝐷2

𝑀𝐴𝐶

1 + 𝑦2
𝜖

 

𝑁 ≈ −
𝐵1(𝑦1)

𝐵2(𝑦2)
⋅
𝐷1
𝑀𝐴𝐶

𝐷2
𝑀𝐴𝐶 ⋅

1 + 𝑦2
1 + 𝑦1

 

This is the position in the second bond that hedges the bond portfolio against yield curve 

shifts.  

Convexity 

The issue with the duration matching strategy above is that it is based on a linearization (a 

first order linear approximation) of the duration. Since changes in the bond price changes for 

when the yield changes, so will the duration. Essentially, we are basing the hedge on 

durations that are only approximate. This approximation works well when 𝜖 is small, but as 𝜖 

gets larger the approximation becomes less accurate.  

We account for this second order effect of the bond price by using the convexity. The 

convexity measures the change in bond price for different yields. Formally, this is the second 

derivative of the bond price with respect to the yield, divided by the bond price. 

𝐶 =
1

𝐵(𝑦)

𝜕2𝐵(𝑦)

𝜕𝑦2
 

𝐶 =
1

𝐵(𝑦)
[∑

𝑖(𝑖 + 1)

𝑚2
⋅

𝐶
𝑚

(1 +
𝑦
𝑚
)
𝑖+2 +

𝑛(𝑛 + 1)

𝑚2
⋅

𝑀

(1 +
𝑦
𝑚
)
𝑛+2

𝑛

𝑖=1

] 

We divide by the bond price to get a percentage change rather than the level change.  
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The second order Taylor approximation is  

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓
′(𝑥0)(𝑥 − 𝑥0) +

1

2
𝑓′′(𝑥0)(𝑥 − 𝑥0)

2  

Let 𝑓(𝑥0) = 𝐵(𝑦) and 𝑥 = 𝑦 + 𝜖 where 𝜖 is a small number. Then 

𝐵(𝑦 + 𝜖) ≈ 𝐵(𝑦) + 𝐵′(𝑦)𝜖 +
1

2
𝐵′′(𝑦)𝜖2 

Using that  

𝐶 =
1

𝐵(𝑦)

𝜕2𝐵(𝑦)

𝜕𝑦2
 

𝜕2𝐵(𝑦)

𝜕𝑦2
= 𝐵(𝑦)𝐶 

We arrive at  

𝐵(𝑦 + 𝜖) ≈ 𝐵(𝑦) + 𝐵′(𝑦)𝜖 +
1

2
𝐵(𝑦)𝐶 ⋅ 𝜖2 

Δ𝐵 ≈ 𝐵′(𝑦)𝜖 +
1

2
𝐵(𝑦)𝐶 ⋅ 𝜖2 

Chapter 2: Forwards and Futures 

Forwards 

A forward contract is an agreement between two parties to trade a specified quantity of a 

specified good at a specified price on a specified date in the future. Forward are primarily 

used for hedging purposes, but they can also be used as speculative instrument. An 

important feature of forward contracts is that they are costless to enter. That means that 

none of parties behind the contract will pay anything at time 0.  

This is the basic terminology used for forwards 

• Buyer of the forward contract has a long position in the contract 

• Seller of the forward contract has a short position in the contract 

• The date in which the trade of the good will take place is the maturity date 

• The good is called the underlying asset 

• The price in the contract is called the delivery price 
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Let the delivery price be denoted as 𝐹0,𝑇 and the maturity date 𝑇. Then, let 𝑆𝑇 denote the 

value of the underlying at time 𝑇. The payoff for the long position of a forward contract is  

𝑆𝑇 − 𝐹0,𝑇 

For the short position, the payoff becomes 

𝐹0,𝑇 − 𝑆𝑇 

Therefore, this is a zero-sum trade (one party’s gain is the other party’s losses). It is also 

clear that the payoff structure is linear, so forward contracts are linear derivatives.  

Forward Pricing on Financial Assets 

Forwards are priced using replication. Replication is a concept that is based on the idea that 

the price of a derivative (such as a forward) must be the same as creating the same 

outcome/payoff using other securities. To be able to price derivatives using replication, we 

will need a no arbitrage assumption. The no arbitrage assumption states that arbitrage 

opportunities cannot persist in a market.  

Now, consider a long position in the forward. The forward will involve no cash flows until time 

𝑇 in which the delivery price 𝐹0,𝑇 must be paid. From time 0, the cost of this strategy must 

then be 𝑃𝑉(𝐹0,𝑇). This is called the prepaid forward price because it is the price you would 

pay today to receive the stock at time 𝑇. An alternative notation for the prepaid forward is 

𝐹0,𝑇
𝑃 = 𝑃𝑉(𝐹0,𝑇)  

To replicate this strategy, we first buy the underlying asset at price 𝑆0. This purchase will 

give us 𝑆𝑇 at time 𝑇. However, the asset purchase may also come with holding benefits 

and/or costs such as dividends, coupons, or storage costs. Therefore, purchasing an asset 

may come with implicit costs excluding the asset price. Let 𝑀 be the present value of net 

holding costs. Then, 

𝑀 = 𝑃𝑉(𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠) − 𝑃𝑉(𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠) 

Therefore, the total cost of this strategy must be 

𝑆0 +𝑀 
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In a no-arbitrage market we will then require  

𝑃𝑉(𝐹0,𝑇) = 𝑆0 +𝑀 

With continuous compounding, we solve for the delivery price and get 

𝐹0,𝑇 = (𝑆0 +𝑀)𝑒
−𝑟𝑇 

This is the fundamental theoretical pricing equation for forward contracts.  

• If 𝑃𝑉(𝐹0,𝑇) > 𝑆0 +𝑀 

o Sell forward, purchase asset at spot 

o This is a cash-and-carry arbitrage 

• If 𝑃𝑉(𝐹0,𝑇) < 𝑆0 +𝑀 

o Buy forward, short asset at spot 

o This is a reverse cash-and-carry arbitrage 

We can now derive a general pricing formula for forward contracts. Consider an asset that 

pays a continuous dividend yield 𝛿. Suppose we buy one unit of the stock at 𝑆0. If the 

dividends are reinvested into the asset continuously, one share today will produce 

𝑒𝛿𝑇 shares at time 𝑇. Therefore, if we want one share at time 𝑇, we will have to purchase 

𝑒−𝛿𝑇 shares at time 0.  

If we go back to the derivation of the theoretical forward price, we see that the no-arbitrage 

condition will now require 

𝐹0,𝑇
𝑃 = 𝑆0𝑒

−𝛿𝑇 

𝐹0,𝑇
𝑃 𝑒𝑟𝑇 = 𝑆0𝑒

(𝑟−𝛿)𝑇 

𝐹0,𝑇 = 𝑆0𝑒
(𝑟−𝛿)𝑇 

Which is the forward price for an asset that pays a continuous dividend. This relationship can 

be used to derive the forward premium, which is the ratio of the forward price to the spot 

price.  

𝐹0,𝑇
𝑆0
= 𝑒(𝑟−𝛿)𝑇 
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Since ln (
𝐹0,𝑇

𝑆0
) is the percentage representation for the forward premium over [0, 𝑇], 

dividing it by 𝑇 will give the annualized forward premium. We can then see that  

1

𝑇
ln (
𝐹0,𝑇
𝑆0
) = 𝑟 − 𝛿  

Forward Pricing on Currencies 

When pricing forward contracts on currencies, we must consider that currencies earn 

interest. Therefore, one unit of a foreign currency at time 0 will be more than one unit of the 

same foreign currency at time 𝑇. Therefore, the replicating strategy must factor that 

currencies earn interest yield.  

Consider an investor who enters a currency forward. The investor will pay 𝐹0,𝑇 in the 

domestic currency (NOK) at time 𝑇 for one unit of the foreign currency (USD). To replicate 

this outcome, we cannot buy one unit of the foreign currency today and hold to 𝑇 because by 

then it would have grown to more than one unit.  

Let 𝑥0 be the current price in NOK for one unit of USD, that is, simply the exchange rate 

NOK/USD. Then, by going long on a currency forward we will pay 𝐹 NOK for 1 USD at time 

𝑇. The cost of this strategy in NOK at 𝑡 = 0 must be 𝐹0,𝑇 ⋅ 𝑃𝑉(1 𝑁𝑂𝐾).  

Now, we need to replicate the forward payoff. To receive 1 USD at time 𝑇, we must purchase 

the present value of 1 USD keeping in mind that we are discounting with the US currency 

yield. The present value of 1 USD at time 0 is 𝑥0 ⋅ 𝑃𝑉(1 𝑈𝑆𝐷). These strategies must yield 

the same costs, therefore 

𝐹0,𝑇 ⋅ 𝑃𝑉(1 𝑁𝑂𝐾) = 𝑥0 ⋅ 𝑃𝑉(1 𝑈𝑆𝐷) 

𝐹0,𝑇 = 𝑥0 ⋅
𝑃𝑉(1 𝑈𝑆𝐷)

𝑃𝑉(1 𝑁𝑂𝐾)
 

𝐹0,𝑇 = 𝑥0 ⋅
𝑒−𝑟𝑈𝑆𝑇

𝑒−𝑟𝑁𝑂𝐾𝑇
 

𝐹0,𝑇 = 𝑥0𝑒
(𝑟𝑁𝑂𝐾−𝑟𝑈𝑆)𝑇 
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To clean up the notation, let 𝑥0 be the spot exchange rate,  𝑟 be the domestic interest rate 

and 𝑟𝑓 the foreign rate. Then, to receive one unit of the foreign currency at time 𝑇, the 

forward price in the domestic currency will be 

𝐹0,𝑇 = 𝑥0𝑒
(𝑟−𝑟𝑓)𝑇 

This is the currency forward pricing formula. The interpretation is that the forward price 𝐹0,𝑇 

is the exchange rate you lock in today which will hold at time 𝑇. Therefore, currency forwards 

can be used as a hedging instrument for hedging exchange rate risk.  

Forward Pricing on Commodities 

Forward contracts on commodities share similar characteristics with forward contracts on 

financial assets. However, when pricing commodity forwards, some considerations must be 

made 

• Storage costs. The party that is long on the forward contract must pay the 

counterparty for the storage costs for holding the commodity.  

• Carry markets. A market for which the forward price compensates commodity 

owners for storage costs is a carry market. 

• Lease rate. A commodity short seller may have to compensate the owner commodity 

for lending the commodity.  

• Convenience yield. The owner of a commodity may receive benefits from holding 

the commodity. These benefits include higher profits on commodities when there are 

shortages or when there is an unexpected need for additional production inputs. Such 

benefits may be reflected in forward prices as a convenience yield.  

 

Suppose that we have a commodity with discount rate 𝛼. Then, the price today to receive 

one unit of the commodity in the future is  

𝐹0,𝑇
𝑃 = 𝐸0[𝑆𝑇]𝑒

−𝛼𝑇 

Since 𝐹0,𝑇 = 𝐹0,𝑇
𝑃 𝑒𝑟𝑇, we can write 

𝐹0,𝑇 = 𝐸0[𝑆𝑇]𝑒
−(𝛼−𝑟)𝑇 

Or alternatively  

𝐹0,𝑇𝑒
−𝑟𝑇 = 𝐸0[𝑆𝑇]𝑒

−𝛼𝑇 

This relationship states the forward price discounted at the risk-free rate must equate the 

present value for the unit of the commodity.  
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The Lease Rate for Commodity Short Sales 
Suppose now that we have an investor who wishes to short sell the commodity and is willing 

to pay a continuous lease rate 𝛿𝐿 to the commodity owner. From the perspective of the short 

seller, he will receive the current commodity price 𝑆0 today and return the commodity with a 

lease payment at time 𝑇. The net present value of this trade is 

𝑁𝑃𝑉 = −𝐸0[𝑆𝑇]𝑒
−𝛼𝑇𝑒𝛿𝐿𝑇 + 𝑆0 

This net present value must be zero, otherwise an arbitrage profit can be made from short 

selling the commodity.  

Then,  

𝑆0 = 𝐸0[𝑆𝑇]𝑒
−𝛼𝑇𝑒𝛿𝐿𝑇 

The leasing rate the commodity owner will require that is consistent with an arbitrage-free 

market is 

𝛿𝐿 = 𝛼 −
1

𝑇
ln (

𝐸0[𝑆𝑇]

𝑆0
) 

From the forward price equation, we have  

𝐸0[𝑆𝑇] = (𝐹0,𝑇)
(𝛼−𝑟)𝑇

   

Inserting it in the lease rate equation gives 

𝛿𝐿 = 𝛼 −
1

𝑇
ln (

(𝐹0,𝑇)
(𝛼−𝑟)𝑇

𝑆0
) 

𝛿𝐿 = 𝛼 − 𝛼 + 𝑟 −
1

𝑇
ln (
𝐹0,𝑇
𝑆0
) 

𝛿𝐿 = 𝑟 −
1

𝑇
ln (
𝐹0,𝑇
𝑆0
) 
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Pricing Commodity Forwards with Storage Costs 

Suppose that the future value of the storage costs for one unit of the commodity is 𝜆(0, 𝑇) 

and that the storage cost is paid at time 𝑇. If a commodity owner is presented with the 

opportunity to either sell the commodity today or sell it forward with expiration at time 𝑇, he 

will only sell the commodity at time 𝑇 if the present value of the time 𝑇 forward price and the 

storage costs exceeds the current price 𝑆0. The cash-and-carry strategy is  

Transaction 𝑡 = 0 𝑡 = 𝑇 

Long commodity −𝑆0 𝑆𝑇 

Pay storage cost 0 −𝜆(0, 𝑇) 

Short commodity forward 0 𝐹0,𝑇 − 𝑆𝑇 

Borrow 𝑆0 𝑆0 −𝑆0𝑒
𝑟𝑇  

Total 0 𝐹0,𝑇 − (𝑆0𝑒
𝑟𝑇 + 𝜆(0, 𝑇)) 

 

In equilibrium, we require 

𝐹0,𝑇 = 𝑆0𝑒
𝑟𝑇 + 𝜆(0, 𝑇) 

If the storage cost is paid continuously, the forward price becomes 

𝐹0,𝑇 = 𝑆0𝑒
(𝑟+𝜆)𝑇 

Convenience Yields 
Holding commodities may also come with benefits. These benefits include higher prices on 

commodities when there are shortages or when there is an unexpected need for additional 

production inputs. Commodities may also come with other nonmonetary benefits. Such 

benefits from holding commodities are reflected by a convenience yield. It is not an 

observable yield in the market, but it is an important factor for pricing commodity forwards.  

Convenience yields make short-selling commodities more difficult. Suppose we have a 

commodity with no storage costs. Let  �̂� be the observed forward price in the market. If  �̂� >

𝐹, the forward is overpriced relative to the theorical price. We would then expect a price 

correction as investors short the commodity and purchase the forward contract. Therefore,  

�̂� ≤ 𝑆0𝑒
𝑟𝑇 
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Let 𝑐 be the annualized convenience yield. Then the present value for one unit of the 

commodity at time 0 is  

𝑒−𝑐𝑇 

To enter the arbitrage position, the investor does the following 

Transaction 𝑡 = 0 𝑡 = 𝑇 

Long forward 0 𝑆𝑇 − �̂� 

Short PV of 

commodity 

𝑆0𝑒
−𝑐𝑇 −𝑆𝑇 

Invest at risk-free 

rate 

−𝑆0𝑒
−𝑐𝑇 𝑆0𝑒

(𝑟−𝑐)𝑇 

Total 0 𝑆0𝑒
(𝑟−𝑐)𝑇 − �̂� 

 

The investor makes an arbitrage profit provided  

𝑆0𝑒
(𝑟−𝑐)𝑇 − �̂� > 0 

Therefore, under the assumption of no arbitrage, we would require 

𝑆0𝑒
(𝑟−𝑐)𝑇 ≤ �̂� 

In total, we must require 

𝑆0𝑒
(𝑟−𝑐)𝑇 ≤ �̂� ≤ 𝑆0𝑒

𝑟𝑇 

This makes it clear that commodity forwards results in a price interval in which the investor 

cannot make an arbitrage profit from rather than one single price. If we now assume that the 

commodity requires a continuous storage cost 𝜆, we can write  

𝑆0𝑒
(𝑟+𝜆−𝑐)𝑇 ≤ �̂� ≤ 𝑆0𝑒

(𝑟+𝜆)𝑇 
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Backwardation and Contango 

We say that the forward market is in contango when the forward prices exceed the spot 

prices 

𝐹 > 𝑆0 

If there are no convenience yields, contango is the normal situation predicted by the pricing 

equation.  

When forward prices are lower than the spot price, we say that the market is in 

backwardation. This is when 

𝐹 < 𝑆0 

This typically occurs in markets with high convenience yields.  

Forward Rate Agreements 

Forward rate agreements (FRAs) are forward contracts written on interest rates. FRAs 

allow investors to lock in an interest rate 𝑘 for borrowing or lending a specified principal 

amount 𝑃 over a period [𝑡1, 𝑡2]. This is called a 𝑡1 − 𝑡2 FRA because it begins in 𝑡1 months 

and ends in 𝑡2 months.  

The long position holder in the FRA will receive the difference between a reference rate 𝑅 

and the agreed-upon fixed interest rate 𝑘, that is, 𝑅 − 𝑘. If this difference is negative, then 

the interpretation is that the long position must make a payment to the short position.  Let 𝑑 

be the investment period in days. Assume that the payment is settled at the end of the 

contract, 𝑡2. Then the payoff to the long position will be 

𝑃 ⋅
(𝑅 − 𝑘) ⋅

𝑑
360

1 + 𝑅 ⋅
𝑑
360

 

Valuing FRAs 

When the FRA is initiated, the fixed rate 𝑘 is chosen such that the contract has zero value for 

both parties. This interest rate is what is referred to as the price of the FRA. We can derive 

this interest rate by replication. 
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We know that the payoff to the long position is  

𝑃 ⋅
(𝑅 − 𝑘) ⋅

𝑑
360

1 + 𝑅 ⋅
𝑑
360

 

(𝑃𝑅
𝑑
360

− 𝑃𝑘
𝑑
360

)

1 + 𝑅 ⋅
𝑑
360

 

Add and subtract the principal in the numerator 

(𝑃 + 𝑃𝑅
𝑑
360

− 𝑃𝑘
𝑑
360

− 𝑃)

1 + 𝑅 ⋅
𝑑
360

 

Separate the terms 

𝑃 + 𝑃𝑅
𝑑
360

1 + 𝑅 ⋅
𝑑
360

−
𝑃𝑘

𝑑
360

− 𝑃

1 + 𝑅 ⋅
𝑑
360

 

This can be written as 

𝑃 − 𝑃 ⋅
1 + 𝑘 ⋅

𝑑
360

1 + 𝑅 ⋅
𝑑
360

 

The first term 𝑃 is a certain cash inflow at time 𝑡1. The second term is an outflow that is 

uncertain because the reference rate 𝑅 is not determined until 𝑡2. Regardless of the outcome 

of 𝑅, if the second term is invested at 𝑅 at time 𝑡1, the amount will grow to  

𝑃 ⋅
1 + 𝑘 ⋅

𝑑
360

1 + 𝑅 ⋅
𝑑
360

⋅ (1 + 𝑅 ⋅
𝑑

360
) = 𝑃 (1 + 𝑘 ⋅

𝑑

360
) 

The FRA contract will then consist of two cash flows. A certain inflow of 𝑃 at 𝑡1 and a certain 

outflow of 𝑃 (1 + 𝑘 ⋅
𝑑

360
) at time 𝑡2. Let 𝐵(𝑇) denote the present value of 1 receivable at 

time 𝑇.  
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Then, the present value of these two cash flows is  

𝑃𝑉 = 𝐵(𝑡1)𝑃 − 𝐵(𝑡2)𝑃 (1 + 𝑘 ⋅
𝑑

360
) 

Since an FRA has a zero value at initiation, we set the present value to zero and solve for 𝑘. 

This gives 

𝑘 =
𝐵(𝑡1) − 𝐵(𝑡2)

𝐵(𝑡2)
⋅
360

𝑑
 

Futures 

Futures contracts are essentially forward contracts that are traded on an exchange. 

Although forwards and futures appear to be alike, there are a few differences. 

• Futures are settled daily, rather than at expiration. This daily settlement is called 

marking-to-market and can lead to differences in pricing of futures and an otherwise 

identical forward. 

• Futures are liquid. It is possible to offset the obligation from the future by entering an 

opposite position. 

• Futures contracts are standardized whereas OTC forward contracts can be 

customized.  

• Futures contracts tend to have a lower credit risk due to the daily settlement.  

Since futures positions are marked-to-market, forward and future prices will often differ. This 

is because interest is earned on the proceeds from the mark-to-market.  

Chapter 3: Swaps 

Commodity Swaps 

A swap is a periodic exchange of cash flows under some specified rules. One subset of 

swap contracts are commodity swaps. Commodity swaps are swap contracts in which a 

commodity is swapped for cash. The swap contract must specify which commodity is being 

swapped, how many units are being swapped and how many settlements are going to be 

made. This unit exchange of commodities is called the notional amount of the swap and is 

used to determine the magnitude of payments. Suppose for instance that the notional 

amount is 100 000 barrels of oil. Then all swap payments are based on an exchange of 

100 000 barrels.  
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We can now derive the swap price. Suppose that there are 𝑛 settlements occurring on dates 

𝑡𝑖 , 𝑖 = 1,… , 𝑛. The price of a zero-coupon bond maturing on date 𝑡𝑖  is 

𝑃(0, 𝑡𝑖) =
1

(1 + 𝑟(0, 𝑡𝑖))
𝑡𝑖
 
 

If the buyer of the swap were enter a series of forward contracts to purchase one unit on 

each date 𝑡𝑖 , the present value of this position is simply the present value of each forward 

price, discounted with the appropriate discount rate. These forward contracts replicate the 

commodity swap, so the present value of these forward contracts must yield prepaid swap 

price which is the price you would pay today for the swap.  

𝑆0,𝑇
𝑃 =∑𝐹0,𝑡𝑖𝑃(0, 𝑡𝑖)

𝑛

𝑖=1

 

The fixed swap price, 𝑅, is the price we would pay each year to obtain the commodity. By a 

no-arbitrage argument, this agreement must have the same present value as the prepaid 

swap price.  

∑𝑅𝑃(0, 𝑡𝑖) =∑𝐹0,𝑡𝑖𝑃(0, 𝑡𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 

Which solves for  

𝑅 =
∑ 𝐹0,𝑡𝑖𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

∑ 𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

 

Now, suppose instead that the buyer wishes to enter a swap in which the quantity of the 

commodity varies over time. To do so, we simply adjust for the number of quantities to be 

purchased at time 𝑡𝑖 . Let 𝑄𝑡𝑖 denote the quantity of the commodity to be delivered at time 𝑡𝑖 . 

Then, the prepaid swap price must be 

𝑆0,𝑇
𝑃 =∑𝑄𝑡𝑖𝐹0,𝑡𝑖𝑃(0, 𝑡𝑖)

𝑛

𝑖=1
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The fixed swap price equivalent entails purchasing 𝑄𝑡𝑖 units for 𝑅 in each period. Then,  

∑𝑅𝑄𝑡𝑖𝑃(0, 𝑡𝑖)

𝑛

𝑖=1

=∑𝑄𝑡𝑖𝐹0,𝑡𝑖𝑃(0, 𝑡𝑖)

𝑛

𝑖=1

 

The fixed swap price is then 

𝑅 =
∑ 𝑄𝑡𝑖𝐹0,𝑡𝑖𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

∑ 𝑄𝑡𝑖𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

 

Interest Rate Swaps 

An interest rate swap is a swap contract where the cash flows are based on interest rates. 

To motivate their use, consider a firm with a floating rate debt that would prefer to have a 

fixed-rate debt. The firm could convert the floating rate debt to fixed rate debt in three ways: 

• Retire floating rate debt and issue a fixed-rate debt in its place 

o Upside: Firm now has fixed-rate debt 

o Downside: Costly 

• Enter a series of FRAs to lock in a fixed rate for each payment 

o Upside: Rates are known in advance, and are so “fixed” 

o Downside: The “fixed” rate will vary each year 

• Enter an interest rate swap 

o Receive a floating rate and pay a fixed rate, then use the floating rate to pay 

back the debt  

o The loan becomes fixed 

We can now construct an interest swap in a similar fashion as the commodity swap. Suppose 

the buyer of the swap wishes to pay fixed-for-floating, that is, paying the fixed rate 𝑅 and 

receive the floating rate. Let the time 0 implied forward rate between 𝑡𝑖−1 and 𝑡𝑖  be the 

floating rate. Generally, this is 

𝑟𝑡(𝑡𝑖−1, 𝑡𝑖) =
𝑃(0, 𝑡𝑖−1)

𝑃(0, 𝑡𝑖)
− 1 

𝑟𝑡(𝑡𝑖−1, 𝑡𝑖) =
𝑃(0, 𝑡𝑖−1) − 𝑃(0, 𝑡𝑖)

𝑃(0, 𝑡𝑖)
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The present value of the cash inflows the buyer receives is  

∑𝑃(0, 𝑡𝑖) ⋅ 𝑟0(𝑡𝑖−1, 𝑡𝑖)

𝑛

𝑖=1

 

The present value of the cash inflows the seller receives is  

∑𝑃(0, 𝑡𝑖)𝑅

𝑛

𝑖=1

 

The interest rate swap should have a value of zero initially, by construction. Therefore, the 

present value of inflows and outflows must be zero. So,  

∑𝑃(0, 𝑡𝑖) ⋅ 𝑟0(𝑡𝑖−1, 𝑡𝑖) −∑𝑃(0, 𝑡𝑖)𝑅 = 0

𝑛

𝑖=1

𝑛

𝑖=1

 

∑𝑃(0, 𝑡𝑖) ⋅ 𝑟0(𝑡𝑖−1, 𝑡𝑖) =∑𝑃(0, 𝑡𝑖)𝑅

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑅 =
∑ 𝑃(0, 𝑡𝑖)𝑟0(𝑡𝑖−1, 𝑡𝑖)
𝑛
𝑖=1

∑ 𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

 

𝑅 =

∑ 𝑃(0, 𝑡𝑖) (
𝑃(0, 𝑡𝑖−1)
𝑃(0, 𝑡𝑖)

− 1)𝑛
𝑖=1

∑ 𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

 

𝑅 =
∑ (𝑃(0, 𝑡𝑖−1) − 𝑃(0, 𝑡𝑖))
𝑛
𝑖=1

∑ 𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

 

Note that  

∑(𝑃(0, 𝑡𝑖−1) − 𝑃(0, 𝑡𝑖))

𝑛

𝑖=1

= 𝑃(0, 𝑡0) − 𝑃(0, 𝑡𝑛) 

𝑅 =
𝑃(0, 𝑡0) − 𝑃(0, 𝑡𝑛)

∑ 𝑃(0, 𝑡𝑖)
𝑛
𝑖=1
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If the interest rate swap starts immediately, that is, 𝑡0 = 0, we must have 

𝑃(0, 𝑡0) =
1

(1 + 𝑟(0, 𝑡0))
𝑡0
= 1 

Otherwise we would receive an instant positive cash flow with no cost. Therefore,  

𝑅 =
1 − 𝑃(0, 𝑡𝑛)

∑ 𝑃(0, 𝑡𝑖)
𝑛
𝑖=1

 

Chapter 4: Options 

An option is a financial derivative that gives its holder the right to buy or sell a specified 

quantity of a specified asset at a specified price on some agreed-upon date(s). Option 

terminology is listed below 

Term Interpretation 

Call option Right to buy the underlying asset 

Put option Right to sell the underlying asset 

Expiration/Maturity date Date on which the right expires 

Strike/Exercise price Price at which the right may be exercised 

Long position/Holder/Buyer Party that holds the right 

Short position/Writer/Seller Party with a contingent obligation 

American-style option Right may be exercised any time before 

maturity 

European-style option Right may be exercised only at maturity 

Bermudan-style option Right may be exercised before maturity, but 

only at pre-specified dates 

 

We need some notation as well 

• 𝑆𝑡: Current price of the underlying asset at time 𝑡 

• 𝑇: Maturity date 

• 𝐾: Strike price 

• 𝐶: Current call price 

• 𝑃: Current put price 
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The gross payoffs (before we factor the purchase/sale of the option) for the standard options 

are 

Long put max (0, 𝑆𝑇 − 𝐾) 

Short put −max (0, 𝑆𝑇 − 𝐾) 

Long call max (0, 𝐾 − 𝑆𝑇) 

Short call  −max (0, 𝐾 − 𝑆𝑇) 

 

Price Bounds on Calls 

Option prices will depend on several factors. The prices are different for calls and puts, but 

also across option styles, exercise price and time to maturity.  

We start by deriving bounds on call prices. Consider a call option. A reasonable upper bound 

on its price is the value of the underlying asset. There is no reason that a call option on the 

asset should be worth more than the underlying asset itself. Therefore,  

𝐶 ≤ 𝑆0 

It is also clear that the option price cannot be negative. In that case, the investor would be 

paid for the right to throw away the option for free. Therefore, 

𝐶 ≥ 0 

When the option is of American style, another lower bound is 

𝐶𝐴 ≥ 𝑆0 − 𝐾 

Since American calls can be exercised at any time before 𝑇. If exercised immediately, the 

investor receives 𝑆0 − 𝐾. If this relationship does not hold, the investor can make an 

arbitrage profit by purchasing the call and exercising it immediately.  

The final lower bound will hold for both European and American calls. Consider a European 

call on a non-dividend paying asset. We construct the following two portfolios 
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Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 < 𝐾 𝑡 = 𝑇, 𝑆𝑇 > 𝐾 

Long call −𝐶𝐸  0 𝑆𝑇 − 𝐾 

Long underlying −𝑆0 𝑆𝑇 𝑆𝑇 

Borrow 𝑃𝑉(𝐾) 𝑃𝑉(𝐾) −𝐾 −𝐾 

  

We see that the long call will strictly dominate the underlying + borrowing portfolio. Therefore,  

𝐶𝐸 ≥ 𝑆 − 𝑃𝑉(𝐾) 

Now, consider the case when the underlying asset also pays dividends. Assume for 

simplicity that this dividend is paid at 𝑇 as well. We then construct the same portfolio as 

above, but now with another borrowing element 

 

Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 < 𝐾 𝑡 = 𝑇, 𝑆𝑇 > 𝐾 

Long call −𝐶𝐸  0 𝑆𝑇 − 𝐾 

Long underlying −𝑆0 𝑆𝑇 + 𝐷 𝑆𝑇 + 𝐷 

Borrow 𝑃𝑉(𝐾) +

𝑃𝑉(𝐷) 

𝑃𝑉(𝐾) + 𝑃𝑉(𝐷) −𝐾 − 𝐷 −𝐾 − 𝐷 

 

For the same reason as above, the call will strictly dominate. Now, the lower bound becomes 

𝐶𝐸 ≥ 𝑆 − 𝑃𝑉(𝐾) − 𝑃𝑉(𝐷) 

We can use these inequalities to determine one single expression for each option style 

• 𝐶𝐸 ≥ max(0, 𝑆0 − 𝑃𝑉(𝐾) − 𝑃𝑉(𝐷)) 

• 𝐶𝐴 ≥ max(0, 𝑆 − 𝐾, 𝑆 − 𝑃𝑉(𝐾) − 𝑃𝑉(𝐷)) 
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Price Bounds on Puts 

Now, we turn to put options. If the price of the underlying cannot become negative, the 

maximum payoff on a put option is 𝐾. So, the upper bound becomes 

𝑃 ≤ 𝐾 

When the put is of European style, the investor will have to wait until time 𝑇 to exercise the 

put. Therefore, the maximum profit of 𝐾 at time 𝑇 is only worth 𝑃𝑉(𝐾) today. So, 

𝑃𝐸 ≤ 𝑃𝑉(𝐾) 

For the same reason as with the call options, put options cannot have a negative price.  

𝑃 ≥ 0 

To prevent arbitrage when the put is American, the put must cost at least as much as the 

payoff from immediate exercise 

𝑃𝐴 ≥ 𝐾 − 𝑆0 

Now, we derive the last lower bound. Consider the case when the underlying asset also pays 

dividends at time 𝑇. We then create the following two portfolios 

Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 < 𝐾 𝑡 = 𝑇, 𝑆𝑇 > 𝐾 

Long put −𝑃𝐸  𝐾 − 𝑆𝑇 0 

Short underlying 𝑆0 −𝑆𝑇 − 𝐷 −𝑆𝑇 − 𝐷 

Lend 𝑃𝑉(𝐷) +

𝑃𝑉(𝐾) 

−𝑃𝑉(𝐷) − 𝑃𝑉(𝐾) 𝐷 + 𝐾 𝐷 + 𝐾 

 

The put option strictly dominates the other portfolio. Therefore,  

𝑃𝐸 ≥ 𝑃𝑉(𝐷) + 𝑃𝑉(𝐾) − 𝑆0 

Lastly, American puts must always cost more than European puts. So,  

𝑃𝐴 ≥ 𝑃𝐸  
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To summarize 

𝐾 ≥ 𝑃𝐸 ≥ max(0, 𝑃𝑉(𝐾) + 𝑃𝑉(𝐷) − 𝑆0) 

𝐾 ≥ 𝑃𝐴 ≥ max(0, 𝐾 − 𝑆0, 𝑃𝑉(𝐾) + 𝑃𝑉(𝐷) − 𝑆0) 

Insurance Values on Options 

Holding options provide investors with protections against undesirable price movements. The 

value of this protection is the insurance value of the option. Consider the portfolio used for 

deriving price bounds on call options. 

Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 < 𝐾 𝑡 = 𝑇, 𝑆𝑇 > 𝐾 

Long call −𝐶𝐸  0 𝑆𝑇 − 𝐾 

Long underlying −𝑆0 𝑆𝑇 + 𝐷 𝑆𝑇 + 𝐷 

Borrow 𝑃𝑉(𝐾) +

𝑃𝑉(𝐷) 

𝑃𝑉(𝐾) + 𝑃𝑉(𝐷) −𝐾 − 𝐷 −𝐾 − 𝐷 

 

As we saw earlier, when 𝑆𝑇 < 𝐾 the synthetic forward results in a payoff of 𝑆𝑇 − 𝐾 < 0 

while the call provides a payoff of 0. This insurance that the call option provides will be 

reflected in its price. Therefore, a measure of the insurance value for the call option is the 

difference between the two portfolios 

𝐼𝑉(𝐶) = 𝐶 − [𝑆0 − 𝑃𝑉(𝐾) − 𝑃𝑉(𝐷)] 

We can find the insurance value for a put as well. Using the same principle, consider the 

synthetic short forward portfolio 

Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 < 𝐾 𝑡 = 𝑇, 𝑆𝑇 > 𝐾 

Long put −𝑃𝐸  𝐾 − 𝑆𝑇 0 

Short underlying 𝑆0 −𝑆𝑇 − 𝐷 −𝑆𝑇 − 𝐷 

Lend 𝑃𝑉(𝐷) +

𝑃𝑉(𝐾) 

−𝑃𝑉(𝐷) − 𝑃𝑉(𝐾) 𝐷 + 𝐾 𝐷 + 𝐾 

 

The difference in the price between the two portfolios must be the insurance value. 

Therefore, 

𝐼𝑉(𝑃) = 𝑃 − [𝑃𝑉(𝐾) + 𝑃𝑉(𝐷) − 𝑆0] 
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Call Options and Strikes 

We now examine option prices for different values of 𝐾. 

Consider two call options with strike prices 𝐾1 and 𝐾2. If 𝐾2 > 𝐾1, then 

𝐶(𝐾1) ≥ 𝐶(𝐾2) 

This is logical because the payoff at 𝐾1 is larger for any payoff in which 𝑆𝑇 > 𝐾1. A formal 

proof can be done by assuming otherwise and setting up a bull spread.  

We now derive a maximum difference on the two call options. The maximum additional 

payoff from using the 𝐾1 strike call instead of the 𝐾2 strike call is 𝐾2 − 𝐾1. Then, if the 

option is of American style, we can write 

𝐶𝐴(𝐾1) − 𝐶𝐴(𝐾2) ≤ 𝐾2 − 𝐾1 

For European style call options, the payoff 𝐾2 − 𝐾1 cannot be exercised until time 𝑇. 

Therefore,  

𝐶𝐸(𝐾1) − 𝐶𝐸(𝐾2) ≤ 𝑃𝑉(𝐾2 − 𝐾1) 

The final price restriction relates any three call options that differ only in strike prices. Define  

𝑤 =
𝐾3 − 𝐾2
𝐾3 − 𝐾1

  

By going long on 𝑤 units of the 𝐾1 strike call, 1 − 𝑤 units of the 𝐾3 strike call and short on 

one unit of the 𝐾2 strike call, we guarantee a non-negative payoff. Therefore, the price on 

this strategy must also be positive. So,  

𝑤𝐶(𝐾1) + (1 − 𝑤)𝐶(𝐾3) ≥ 𝐶(𝐾2) 

Put Options and Strikes 

Let 𝐾1 < 𝐾2. Then we must require that 

𝑃(𝐾1) < 𝑃(𝐾2) 

This restriction makes sense as the 𝐾2 strike put will provide a larger payoff than the 𝐾1 

strike put for any given price of the underlying asset, provided it is non-zero. A formal proof 

can be done by assuming otherwise and entering a bear spread.   
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The second restriction is related to the maximum price difference between two puts that differ 

in strike prices. We use a similar argument as we did for the call options. The maximum 

additional payoff for the 𝐾2 strike put is 𝐾2 − 𝐾1. Therefore,  

𝑃𝐴(𝐾2) − 𝑃𝐴(𝐾1) ≤ 𝐾2 − 𝐾1 

𝑃𝐸(𝐾2) − 𝑃𝐸(𝐾1) ≤ 𝑃𝑉(𝐾2 − 𝐾1) 

Lastly, define  

𝑤 =
𝐾3 − 𝐾2
𝐾3 − 𝐾1

 

And assume that 𝐾1 < 𝐾2 < 𝐾3. By going long on 𝑤 units of the 𝐾1 strike put, 1 − 𝑤 units 

of the 𝐾3 strike put and short on one unit of the 𝐾2 strike put, we guarantee a non-negative 

payoff. Therefore, the price on this strategy must also be positive. So,  

𝑤𝑃(𝐾1) + (1 − 𝑤)𝑃(𝐾3) ≥ 𝑃(𝐾2) 

Call Prices and Time 

Consider two call options that differ in time to maturity but are otherwise identical. We want to 

examine the call prices when the expiration dates are different. Suppose we have two 

American call options. If 𝑇1 < 𝑇2, then  

𝐶𝐴(𝑇2) > 𝐶𝐴(𝑇1) 

This restriction is intuitive as longer expiration dates increase the chance of the option 

yielding a positive payoff.  

We can also show that this result holds for European call options, provided the asset does 

not pay any dividends between 𝑇1 and 𝑇2.  

Recall that 𝐶𝐸 ≥ 𝑆0 − 𝑃𝑉(𝐾) and consider two European call options with expiration dates 

𝑇1 and 𝑇2 where the underlying does not pay any dividend. This is equivalent with 𝑃𝑉(𝐷) =

0. If we are at date 𝑇1, then the payoff on the call with maturity 𝑇1 is worth max(0, 𝑆𝑇1 − 𝐾) 

and the call with maturity 𝑇2 is worth at least max (0, 𝑆𝑇1 − 𝑃𝑉(𝐾)). Since 𝑃𝑉(𝐾) ≤ 𝐾, 

the payoff on the 𝑇2 strike call is always equal or greater than the 𝑇1 strike call. Therefore, its 

price must be higher. Thus, if 𝑇2 > 𝑇1, then 

𝐶𝐸(𝑇2) ≥ 𝐶𝐸(𝑇1) 
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Now, if there is a dividend payment after 𝑇1, this will lower the value of the 𝑇2 strike call 

without affecting then 𝑇1 strike call price. So, the relationship above may not hold.  

Put Prices and Time 

If we use the same argument as in the case with the American calls, it is logical that we 

would require  

𝑃𝐴(𝑇1) ≤ 𝑃𝐴(𝑇2) 

Provided that 𝑇1 < 𝑇2. However, this relationship may not necessarily hold for European 

puts. 

Decomposing Option Prices 

Option prices can be decomposed into four parts that will help our understanding early 

exercise, which will be discussed later. Consider the insurance value for the call option 

𝐼𝑉(𝐶) = 𝐶 − [𝑆0 − 𝑃𝑉(𝐾) − 𝑃𝑉(𝐷)] 

Rewrite for the call price 

𝐶 = 𝑆0 − 𝑃𝑉(𝐾) − 𝑃𝑉(𝐷) + 𝐼𝑉(𝐶) 

Add and subtract the strike price 

𝐶 = (𝑆0 − 𝐾)⏟      
𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑉𝑎𝑙𝑢𝑒

+ (𝐾 − 𝑃𝑉(𝐾))⏟        
𝑇𝑖𝑚𝑒 𝑉𝑎𝑙𝑢𝑒

+ (𝐼𝑉(𝐶)⏟  )
𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒

+ (−𝑃𝑉(𝐷)⏟    )
𝑃𝑎𝑦𝑜𝑢𝑡 

 

• The intrinsic value measures the call price to the actual payoff from the option 

• The time value of the call measures the interest savings we obtain from this deferred 

purchase 

• The insurance value measures the value of downside protection 

• The payout measures the negative impact of dividend payments on the call option 

We can derive a similar decomposition of put prices. The relationship is  

𝑃 = (𝐾 − 𝑆) − (𝐾 − 𝑃𝑉(𝐾)) + 𝐼𝑉(𝑃) + 𝑃𝑉(𝐷) 

Which is slightly different from the case of call options.  
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Early Exercise Optimality 

The holder of an American call option has three possibilities open at any point  

• Exercise the call immediately and receive 𝑆0 − 𝐾 

• Sell the call and receive 𝐶𝐴 

• Do nothing  

The optimality of early exercise is derived by comparing the first case to the last two. 

Intuitively, the investor should never exercise the option if 𝐶𝐴 > 𝑆0 − 𝐾 because he would 

receive a larger profit from selling the option instead. When the underlying asset pays no 

dividends, the value of the call option is given by 

𝐶𝐴 = (𝑆0 − 𝐾) + (𝐾 − 𝑃𝑉(𝐾)) + 𝐼𝑉(𝐶) 

Then, the difference between selling and exercising the call is 

𝐶𝐴 − (𝑆0 − 𝐾) = (𝐾 − 𝑃𝑉(𝐾)) + 𝐼𝑉(𝐶) > 0 

Therefore, if the underlying asset does not pay any dividends, early exercise is never 

optimal. The intuition is that exercising early results in giving up two things. First, you lose out 

on time value because you could have bought the asset at 𝐾 at a later point in time rather 

than today. Since 𝐾 today is worth more than 𝐾 at a later point in time, you lose out on 

interest earnings. Second, by exercising the option today you will also lose out on the 

protection reflected in the insurance value. Since the asset does not pay out any dividends, 

you receive no benefits from exercising the option early.  

Let us now consider the case where the asset pays out dividends. Then the difference 

between the two strategies become 

𝐶𝐴 − (𝑆0 − 𝐾) = (𝐾 − 𝑃𝑉(𝐾)) + 𝐼𝑉(𝐶) − 𝑃𝑉(𝐷) 

Since the payout term is negative, we cannot for sure guarantee that early exercise is 

suboptimal. Therefore, early exercise may be optimal. To build on the intuition above, when 

dividends are included in the asset, the option holder receives some benefit from exercising 

early which might make early exercise optimal. The gains equate the losses when 

(𝐾 − 𝑃𝑉(𝐾)) + 𝐼𝑉(𝐶) = 𝑃𝑉(𝐷) 
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As is seen from the decomposition of the call price, early exercise is more likely to be optimal 

if 

• Dividends are large  

o Larger benefits from early exercise 

• Volatility is low 

o Low insurance value 

• Low interest rates 

o Low time value 

Now, we turn to American puts. Early exercise for American puts is suboptimal if 𝑃𝐴 > 𝐾 −

𝑆0. First, we assume that the underlying asset pays no dividends. Then, the price difference 

between exercising early and selling the option is  

𝑃𝐴 − (𝐾 − 𝑆) = −(𝐾 − 𝑃𝑉(𝐾)) + 𝐼𝑉(𝑃) 

Since the first term is negative and second term is positive, we cannot rule out that 

exercising early is suboptimal. The intuition that drives this result is that delaying exercise of 

the put means receiving the strike at a later point in time, which results in a loss of interest 

earnings that could have been earned on the strike. However, delaying exercise retains the 

insurance value of the put which retains the possibility of selling the stock at a higher price 

later. Early exercise is more likely to be optimal if 

• Volatility is low 

o Low insurance value 

• Interest rates are high 

o High time value 

If the underlying pays dividends, the difference instead becomes  

𝑃𝐴 − (𝐾 − 𝑆) = −(𝐾 − 𝑃𝑉(𝐾)) + 𝐼𝑉(𝑃) + 𝑃𝑉(𝐷) 

The additional factor to consider when the underlying pays dividends is that delaying 

exercise also comes with the benefits of obtaining dividends. Therefore, large dividend 

payments will motivate the investor to delay exercise.  
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The Put-Call Parity 

We can now examine the relationship between calls and puts by deriving the Put-Call parity. 

Consider a European put and call option that are otherwise equal.  

Consider two portfolios 

• Portfolio A 

o Long call + Investment of 𝑃𝑉(𝐾) 

• Portfolio B 

o Long put + Long asset 

Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 < 𝐾 𝑡 = 𝑇, 𝑆𝑇 > 𝐾 

Portfolio A −𝐶𝐸 − 𝑃𝑉(𝐾) 𝐾 + 0 𝑆𝑇 − 𝐾 + 𝐾 = 𝑆𝑇 

Portfolio B −𝑃𝐸 − 𝑆0 𝐾 − 𝑆𝑇 + 𝑆𝑇 = 𝐾 𝑆𝑇 

 

No arbitrage requires the cost of these two portfolios to be the same. Therefore,  

𝐶𝐸 + 𝑃𝑉(𝐾) = 𝑃𝐸 + 𝑆0 

If this condition is broken there will exist arbitrage opportunities 

• If 𝐶𝐸 + 𝑃𝑉(𝐾) > 𝑃𝐸 + 𝑆0 

o Short portfolio A 

o Long portfolio B 

• If 𝐶𝐸 + 𝑃𝑉(𝐾) < 𝑃𝐸 + 𝑆0 

o Short portfolio B 

o Long portfolio A 

We can extend the parity condition for options on dividend-paying assets. Construct the 

following portfolio 

• Portfolio A 

o Long call + Investment of 𝑃𝑉(𝐾) + Investment of 𝑃𝑉(𝐷) 

• Portfolio B 

o Long put + Long asset 
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Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 < 𝐾 𝑡 = 𝑇, 𝑆𝑇 > 𝐾 

Portfolio A −𝐶𝐸 − 𝑃𝑉(𝐾)

− 𝑃𝑉(𝐷) 

𝐾 + 𝐷 𝑆𝑇 + 𝐷 

Portfolio B −𝑃𝐸 − 𝑆0 𝐾 + 𝐷 𝑆𝑇 + 𝐷 

 

This changes the cost of portfolio A to 𝐶𝐸 + 𝑃𝑉(𝐾) + 𝑃𝑉(𝐷). Then, the parity instead 

becomes 

𝐶𝐸 + 𝑃𝑉(𝐾) + 𝑃𝑉(𝐷) = 𝑃𝐸 + 𝑆0 

If the options are of American style, we cannot compare the portfolio values at maturity 

because American options can be exercised prior to that. In this case, we are not able to 

derive an exact parity on American options. However, we can derive two inequality-based 

relationships.  

Suppose that we have two American options where the underlying asset does not pay 

dividends. Then, consider two portfolios 

• Portfolio A 

o Long call + Investment of 𝑃𝑉(𝐾) 

• Portfolio B 

o Long put + Long asset 

Portfolio A has an initial cost of 𝐶𝐴 + 𝑃𝑉(𝐾) while portfolio B’s initial cost is 𝑃𝐴 + 𝑆. Now, 

we must note two things 

• American calls on non-dividend paying assets will never be exercised early. Then, 

𝐶𝐴 = 𝐶𝐸  

• Exercising an American put early may be optimal. Then, 𝑃𝐴 ≥ 𝑃𝐸  

We can then write 

𝐶𝐴 + 𝑃𝑉(𝐾) ≤ 𝑃𝐴 + 𝑆0 
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Now, consider the two portfolios 

• Portfolio A* 

o Long call + Investment of 𝐾 rolled over at the money market rate 

• Portfolio B* 

o Long put + Long asset 

The initial cost of A* is s 𝐶𝐴 + 𝐾 while the cost of B* is 𝑃𝐴 + 𝑆0. Suppose we go long on 

portfolio A* and short on portfolio B*. Since the call should never be exercised before 𝑇, the 

only cash flows we must consider is the cash flows from the put option. There are two cash 

flows possible from the put  

• Hold the put until 𝑇 and receive max (0, 𝐾 − 𝑆𝑇) 

• Exercise the put early 

o Pay 𝐾 for the stock 

o Close out short position 

o Invest proceeds in the money market 

Since this strategy leaves us with a positive cash flow at maturity, the strategy must have a 

positive cost. Therefore,  

𝐶𝐴 + 𝐾 ≥ 𝑃𝐴 + 𝑆0 

Suppose now that the underlying asset also pays dividends. When dividends are present, 

early exercise of the American call may also become optimal. Define the two portfolios 

• Portfolio A 

o Long call 

• Portfolio B 

o Long put + Investment of 𝑃𝑉(𝐷) 

We argued earlier that the only motivation to exercise the American call early was to receive 

dividends. However, exercising early would also result in the investor giving up the time 

value as well as the insurance value of the option. Since portfolio B allow the investor to 

retain both the time- and insurance value of the option in addition to receiving the dividends 

early, portfolio B must be worth more than portfolio A 

𝐶𝐸 + 𝑃𝑉(𝐷) ≥ 𝐶𝐴 
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Now, add 𝑃𝑉(𝐾) on both sides 

𝐶𝐸 + 𝑃𝑉(𝐷) + 𝑃𝑉(𝐾) ≥ 𝐶𝐴 + 𝑃𝑉(𝐾) 

Using the European put-call parity on dividend paying assets give us 

𝑃𝐸 + 𝑆0 ≥ 𝐶𝐴 + 𝑃𝑉(𝐾) 

Since American puts are worth more than European puts, we finally get 

𝑃𝐴 + 𝑆0 ≥ 𝐶𝐴 + 𝑃𝑉(𝐾) 

We can also find an upper bound for the American put, namely 

𝑃𝐴 + 𝑆0 ≤ 𝐶𝐴 + 𝐾 + 𝑃𝑉(𝐷) 

Put-Call Parity with Dividend Yields 

In the section above we have used discrete dividends. Suppose now that the dividends are 

continuous with a dividend yield of 𝛿. Therefore, if we want one unit of the underlying asset at 

time 𝑇, we need to purchase 𝑒−𝛿𝑇 units of it today. 

We derive the modified Put-Call parity by constructing the following portfolios 

• Portfolio A 

o Long European call + Investment of 𝑃𝑉(𝐾) 

• Portfolio B 

o Long European put + Long 𝑒−𝛿𝑇 units of the asset 

The costs of the portfolios are 𝐶𝐸 + 𝑃𝑉(𝐾) and 𝑃𝐸 + 𝑆0𝑒
−𝛿𝑇, respectively. Since the 

portfolios yield the same payoffs, the cost must be the same. So,  

𝐶𝐸 + 𝑃𝑉(𝐾) = 𝑃𝐸 + 𝑆0𝑒
−𝛿𝑇 

Generalized Parity 

We can use the Put-Call parity for other assets as well. Suppose we have an option to 

exchange an asset with price 𝑆𝑡 for another asset with price 𝑄𝑡. Now, let 𝐹𝑡,𝑇
𝑃 (𝑆) and 

𝐹𝑡,𝑇
𝑃 (𝑄) denote the prepaid forward prices on each asset. The call price and put price with 

underlying 𝑆 and strike 𝑄 with time to maturity 𝑇 − 𝑡 are 𝐶(𝑆𝑡 , 𝑄𝑡 , 𝑇 − 𝑡), 𝑃(𝑆𝑡 , 𝑄𝑡 , 𝑇 − 𝑡), 

respectively.  
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Suppose we want to replicate the payoff of 𝑆𝑡. Then we do the following 

Transaction 𝑡 = 0 𝑡 = 𝑇, 𝑆𝑇 > 𝑄𝑡 𝑡 = 𝑇, 𝑆𝑇 < 𝑄𝑇 

Long call −𝐶 𝑆𝑇 − 𝑄𝑇 0 

Short put +𝑃 0 𝑆𝑇 − 𝑄𝑇 

Long prepaid 

forward on 𝑄 

−𝐹0,𝑇
𝑃 (𝑄) 𝑄𝑇 𝑄𝑇 

Total 𝑃 − 𝐶 + −𝐹0,𝑇
𝑃 (𝑄) 𝑆𝑇 𝑆𝑇 

 

Replication of the asset 𝑆 will then have an initial cost of 𝑃(𝑆𝑡 , 𝑄𝑡 , 𝑇) − 𝐶(𝑆𝑡 , 𝑄𝑡 , 𝑇) −

𝐹0,𝑇
𝑃 (𝑄). The initial cost of the asset 𝑆 is then its time 0 price 𝑆0, which is also the prepaid 

forward price 𝐹0,𝑇
𝑃 (𝑆). 

 We can then claim that in any period, we must have 

𝑃(𝑆𝑡 , 𝑄𝑡 , 𝑇) − 𝐶(𝑆𝑡 , 𝑄𝑡 , 𝑇) = 𝐹0,𝑇
𝑃 (𝑆) − 𝐹0,𝑇

𝑃 (𝑄) 

This is the general parity condition.  

Option Profits 

The option payoff does not take account of the initial cost of entering the position. When an 

option is purchased for 𝑃0 at time 0, the cost of this position at time 𝑇 is 𝑃0𝑒
𝑟𝑇  because the 

premium payment could have been invested at the risk-free rate instead. Suppose a call 

option has a premium of 𝐶0 while a put option has a premium of 𝑃0, then the respective 

profits for the long position in each option at time 𝑇 is 

𝐶𝑎𝑙𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 = max(𝑆𝑇 − 𝐾, 0) − 𝐶0𝑒
𝑟𝑇  

𝑃𝑢𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 = max(𝐾 − 𝑆𝑇 , 0) − 𝑃0𝑒
𝑟𝑇  

For the short position, or the written option, the profits become 

𝑊𝑟𝑖𝑡𝑡𝑒𝑛 𝑐𝑎𝑙𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 = 𝐶0𝑒
𝑟𝑇 −max(𝑆𝑇 − 𝐾, 0) 

𝑊𝑟𝑖𝑡𝑡𝑒𝑛 𝑝𝑢𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑃0𝑒
𝑟𝑇 −max(𝐾 − 𝑆𝑇 , 0) 
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Directional Option Strategies 

It is possible to create option strategies that payoff if the stock moves in a certain direction. 

This is a directional position. We can categorize directional positions as being a spread or 

collar. Option spreads are positions that consist of only calls or only puts where some of the 

options may be written. There are three common spreads: the bull spread, the bear spread, 

and the ratio spread. The bull spread is performed by entering a long position on a call with 

strike 𝐾1 and premium 𝐶0
1 and entering a short position on an otherwise identical call with 

strike 𝐾2 > 𝐾1 with premium 𝐶0
2. The profit on this position is  

𝐵𝑢𝑙𝑙 𝑆𝑝𝑟𝑒𝑎𝑑 = max(𝑆𝑇 − 𝐾1, 0) − max(𝑆𝑇 − 𝐾2, 0) − 𝐶0
1𝑒𝑟𝑇 + 𝐶0

2𝑒𝑟𝑇 

 

This strategy is useful if the investor believes in an appreciation of the underlying asset.  

The opposite of the bull spread is the bear spread. The bear spread is constructed by 

entering a short position on the low-strike call and entering a long position on the high-strike 

call. The profit becomes 

𝐵𝑒𝑎𝑟 𝑆𝑝𝑟𝑒𝑎𝑑 = −max(𝑆𝑇 − 𝐾1, 0) + max(𝑆𝑇 − 𝐾2, 0) + 𝐶0
1𝑒𝑟𝑇 − 𝐶0

2𝑒𝑟𝑇 

The profit diagram of the bear spread will be the exact opposite of the bull spread. This 

makes it clear that the bear spread strategy is useful if the investor believes that the stock 

price should remain low.  
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The ratio spread is a position with a long position of 𝑚 options at strike 𝐾1 and a short 

position of  𝑛 options at strike 𝐾2 with 𝐾1 ≠ 𝐾2. The profit on this strategy will depend on 

which options are chosen and the ratio 𝑚/𝑛. 

A second main strategy is a collar. A collar consists of a long position in a put option with 

strike 𝐾1 and a short position of a call option with strike 𝐾2 > 𝐾1. The reversed position 

(short put and long call) is a written collar. The difference 𝐾2 − 𝐾1 is called the collar width. 

The profit on a collar is  

𝐶𝑜𝑙𝑙𝑎𝑟 = max(𝐾1 − 𝑆𝑇 , 0) − max(𝑆𝑇 − 𝐾2, 0) − 𝑃0𝑒
𝑟𝑇 + 𝐶0𝑒

𝑟𝑇 

with a profit diagram 
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Volatility Strategies 

We can create option strategies that pay off provided the underlying asset moves in price, 

regardless of direction. This is a nondirectional position. Since these strategies yield 

payoffs when the asset moves in price, nondirectional strategies are simply volatility 

strategies. There are three main nondirectional strategies: straddles, strangles, and 

butterfly spreads.  

The straddle is constructed by purchasing a put option and a call option with the same strike 

price. This is a directional strategy because an increase in the underlying asset will yield a 

payoff from the call, while a decrease in the underlying asset will give a payoff from the put 

option. This is essentially a long position on volatility.  

Straddle profits can be expressed as 

𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 = max(𝑆𝑇 − 𝐾, 0) + max(𝐾 − 𝑆𝑇 , 0) − 𝐶0𝑒
𝑟𝑇 − 𝑃0𝑒

𝑟𝑇 

To avoid the high premiums from the straddle, the investor can instead buy a strangle. The 

strangle position is entered by purchasing one or both options out-of-the-money. This 

reduces the premium of the position but will require larger stock price movements to pay off. 

The profit on the strangle is  

𝑆𝑡𝑟𝑎𝑛𝑔𝑙𝑒 = max(𝑆𝑇 − 𝐾1, 0) + max(𝐾2 − 𝑆𝑇 , 0) − 𝐶0𝑒
𝑟𝑇 − 𝑃0𝑒

𝑟𝑇 

Where 𝐾1 > 𝑆0 and/or 𝑆0 > 𝐾2. The profit diagram for both straddles and strangles is  
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The investor can instead go short on volatility by writing a straddle with profits 

𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 = −max(𝑆𝑇 − 𝐾, 0) − max(𝐾 − 𝑆𝑇 , 0) + 𝐶0𝑒
𝑟𝑇 + 𝑃0𝑒

𝑟𝑇 

The profit diagram is  

 

The disadvantage of this position is that the upside is limited while the downside is unlimited. 

To avoid extreme losses, the straddle writer can hedge the position by purchasing out-of-the-

money put and call options. The put will hedge against low stock prices while the call will 

hedge against high stock prices. The combination of a written straddle and insurance is 

called a butterfly spread. Let 𝑃0
𝑂 and 𝐶0

𝑂 denote the premiums on the out-of-the-money 

puts and calls, respectively. Then the profit on the butterfly spread is 

𝐵𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 =  −max(𝑆𝑇 − 𝐾, 0) −max(𝐾 − 𝑆𝑇 , 0) + 𝐶0𝑒
𝑟𝑇 + 𝑃0𝑒

𝑟𝑇 − 𝑃0
𝑂𝑒𝑟𝑇 − 𝐶0

𝑂𝑒𝑟𝑇 

The profit diagram is  
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Chapter 5: Binomial Option Pricing 

We will now look at how to determine option prices based on information about the 

underlying asset. To do this, we will have to posit a model of how the price of the underlying 

evolves over time. The first model is the binomial model which will be discussed in this 

chapter and the second model is the Black-Scholes model which is discussed in chapter 6.  

The general binomial model assumes that the stock price can take two values in the next 

period 

𝑆𝑡+1 = {
𝑢𝑆𝑡 
𝑑𝑆𝑡  

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

 

Where 𝑢 > 𝑑. The parameters indicate the gross return of the stock from period 𝑡 to 𝑡 + 1. 

The price changes in the model occur at specified points in time 𝑡 = 0, 1, 2, … The calendar 

time between two time points is ℎ years. The parameter ℎ can be very small (days or hours) 

or very large (years or months). 

The volatility of the stock price is related to the ratio 𝑢/𝑑. If this ratio is large, the upside 

return 𝑢 is much larger than the downside return 𝑑. I 

 

In general, these two return parameters are defined by 

𝑢 = 𝑒(𝑟−𝛿)ℎ+𝜎√ℎ , 𝑑 = 𝑒(𝑟−𝛿)ℎ−𝜎√ℎ 

Before we derive the model, we need the parameter restriction 

𝑑 < 𝑒(𝑟−𝛿)ℎ < 𝑢 

If 𝑒(𝑟−𝛿)ℎ ≥ 𝑢, the risk-free asset dominates the stock. Then, the stock can be shorted with 

the proceeds invested at the risk-free rate. This will result in arbitrage profits. If 𝑒(𝑟−𝛿)ℎ ≤ 𝑑, 

the stock dominates risk-free returns so that arbitrage profits can be made by shorting the 

risk-free asset and investing the proceeds in the risky asset. 

Pricing by Replication 

Assume the underlying asset pays a dividend yield of 𝛿 and that the gross interest rate factor 

per period is 𝑒𝑟ℎ. Then, let 𝑆ℎ = 𝑢𝑆 and 𝑆𝑑 = 𝑑𝑆, where 𝑆 is the current stock price. 

Furthermore, define 𝐶ℎ and 𝐶𝑑 as the option payoffs when the underlying takes the values 

𝑆ℎ and 𝑆𝑑, respectively.   
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To find the option price at time 0, we will have to replicate the option payoffs. More 

specifically, we want to find a portfolio consisting of Δ units of a stock and dollar amount 𝐵 in 

borrowing such that the portfolio payoff will create the payoff of the option in both states. 

Here, Δ > 0 represents a purchase of Δ units while Δ < 0 represents a short sale of Δ 

units. Similarly, 𝐵 > 0 is to be interpreted as borrowing while 𝐵 < 0 is interpreted as 

lending.   

To replicate the option, the portfolio must pay 𝐶𝑢 if the stock moves up and 𝐶𝑑 if it moves 

down. Keeping in mind that a purchase of one stock for 𝑆 today gives 𝑆𝑒𝛿ℎ in period ℎ and 

lending 𝐵 yield 𝐵𝑒𝑟ℎ in period ℎ, we write the system of equations  

(Δ ⋅ 𝑢𝑆0 ⋅ 𝑒
𝛿ℎ) + 𝐵𝑒𝑟ℎ = 𝐶𝑢

(Δ ⋅ 𝑑𝑆0 ⋅ 𝑒
𝛿ℎ) + 𝐵𝑒𝑟ℎ = 𝐶𝑑

 

Which solves for  

Δ =
𝐶𝑢 − 𝐶𝑑
𝑆0(𝑢 − 𝑑)

𝑒−𝛿ℎ  

𝐵 =
𝑢𝐶𝑑 − 𝑑𝐶𝑢
𝑢 − 𝑑

𝑒−𝑟ℎ  

The cost of creating this portfolio must then be 

C0 = Δ𝑆0 + 𝐵 = (𝐶𝑢 ⋅
𝑒(𝑟−𝛿)ℎ − 𝑑

𝑢 − 𝑑
+ 𝐶𝑑 ⋅

𝑢 − 𝑒(𝑟−𝛿)ℎ

𝑢 − 𝑑
)𝑒−𝑟ℎ  

Then by the no-arbitrage condition, this must be equivalent to the option price regardless 

whether it is a put or call. If this relationship does not hold, it is possible to make an arbitrage 

profit.  

• 𝐶0 > Δ𝑆0 + 𝐵 

o Sell the option 

o Purchase Δ shares 

o Borrow 𝐵 

• 𝐶0 < Δ𝑆0 + 𝐵 

o Purchase the option 

o Sell Δ shares 

o Lend 𝐵 
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The option price can also be stated differently. If we define the risk neutral probability of an 

upward move of the stock price 

𝑝∗ =
𝑒(𝑟−𝛿)ℎ − 𝑑

𝑢 − 𝑑
 

Then the cost of the replication portfolio Δ𝑆0 + 𝐵 can instead be expressed as 

Δ𝑆0 + 𝐵 = (𝑝
∗𝐶𝑢 + (1 − 𝑝

∗)𝐶𝑑)𝑒
−𝑟ℎ 

This makes it clear that the option price looks like a probability weighted discounted cash 

flow.  

Pricing Multi-Period European Options 

The binomial model can be extended to multiple periods. The pricing method is however not 

any different from the one period case conceptually, but the calculation involves multiple 

steps. To price multi-period European options, we must make use of backward induction.  

Suppose we are looking at an 𝑛 period evolvement of the stock price. This involves 𝑛 up or 

down (or both) movements in total. By drawing the binomial tree, we will end up with 𝑛 

terminal prices at the end of the period.  

To find the time 0 option price for the 𝑛 period evolvement of the stock, the backward 

induction method requires us to first find the 𝑛 − 1 option value for each node in the binomial 

tree. Then, using the results in the 𝑛 − 1 node, we find the 𝑛 − 2 option values. We then 

follow this procedure until we arrive at the time 0 option price.   

Pricing American Options 

When pricing an American option using the binomial model, we must factor in the possibility 

that early exercise may be optimal. First, we remember that early exercise on a non-dividend 

paying asset is never optimal on an American call. Therefore, we will only consider American 

puts, but also calls provided the asset pays dividends.  

The pricing is relatively simple. Given a node, early exercise is only optimal if the payoff from 

the early exercise is greater than the value of the option when it is held for another period. 

Formally, this decision can be described as 
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𝐶𝑎𝑙𝑙 = max( 𝑆𝑡 − 𝐾⏟  
𝐸𝑎𝑟𝑙𝑦 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒

, [𝑝∗ ⋅ 𝐶(𝑢𝑆𝑡 , 𝐾, 𝑡 + ℎ) + (1 − 𝑝
∗)𝐶(𝑑𝑆𝑡 , 𝐾, 𝑡 + ℎ)]⏟                                

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑎𝑙𝑙 𝑖𝑓 ℎ𝑒𝑙𝑑 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑

) 

𝑃𝑢𝑡 = max( 𝐾 − 𝑆𝑡⏟  
𝐸𝑎𝑟𝑙𝑦 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒

, [𝑝∗𝑃(𝑢𝑆𝑡 , 𝐾, 𝑡 + ℎ) + (1 − 𝑝
∗)𝑃(𝑑𝑆𝑡 , 𝐾, 𝑡 + ℎ)]⏟                              

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑢𝑡 𝑖𝑓 ℎ𝑒𝑙𝑑 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑

)  

It is however important to test this condition at each node. After testing whether early 

exercise is optimal, backward induction is used to arrive at the time 0 price of the option.  

Options on Other Assets 

The binomial model can easily be extended to price options on assets other than stocks but 

does however require a slight tweak of the assumptions. Assume that there is no uncertainty 

about the future stock price. That is, we know today which value 𝑆𝑇 will take at time 𝑇. No 

uncertainty must then imply that the stock can only yield a rate of return equal to the risk-free 

rate. Then, the stock price must equal the forward price  

𝐹𝑡,𝑡+ℎ = 𝑆𝑡𝑒
(𝑟−𝛿)ℎ 

If we now add uncertainty in the forward price rather than the stock price, we can model the 

stock price movements as follows 

𝑢𝑆𝑡 = 𝐹𝑡,𝑡+ℎ𝑒
𝜎√ℎ 

𝑑𝑆𝑡 = 𝐹𝑡,𝑡+ℎ𝑒
−𝜎√ℎ    

So, provided we have an expression for the forward price of the asset, we can create a 

binomial tree of those assets. This tree is called a forward tree.  

Chapter 6: The Black-Scholes Model 

The second common option pricing model, and perhaps the most famous one, is the Black-

Scholes model. It a continuous time model as prices in the model can change continuously 

rather than at discrete points in time. The Black-Scholes model is widely popular due to its 

closed-form solution, that is, an explicit formula for the option price.  
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Assumptions 

• Continuously compounded returns are normally distributed and independent over 

time 

• The volatility of the continuously compounded returns is known and constant 

• Future dividends are known 

• The risk-free rate is known and constant 

• No transaction costs or taxes 

• The investor can short sell costless and borrow at the risk-free rate 

Pricing Options using Black-Scholes 

The Black-Scholes formula for a European call on a stock with dividend yield 𝛿 is  

𝐶(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) = 𝑆𝑒−𝛿𝑇𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2) 

𝑑1 =
ln (

𝑆
𝐾
) + (𝑟 − 𝛿 +

1
2
𝜎2) 𝑇

𝜎√𝑇
 

𝑑2 = 𝑑1 − 𝜎√𝑇 

Where 𝑁(𝑥) is the cumulative normal distribution function, which is the probability that a 

randomly drawn number from a normal distribution with 𝜇 = 0 and 𝜎2 = 1 will be less than 

𝑥. We can find the formula for European puts using the Put-Call parity for European options,  

𝐶(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) + 𝑃𝑉(𝐾) = 𝑃(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) + 𝑆0𝑒
−𝛿𝑇 

𝑃(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) = 𝐶(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) + 𝐾𝑒−𝑟𝑇 − 𝑆0𝑒
−𝛿𝑇 

𝑃(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) = 𝑆𝑒−𝛿𝑇𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2) + 𝐾𝑒

−𝑟𝑇 − 𝑆0𝑒
−𝛿𝑇 

Using that 1 − 𝑁(𝑥) = 𝑁(−𝑥), we arrive at  

𝑃(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆𝑒
−𝛿𝑇𝑁(−𝑑1) 
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Black-Scholes Pricing on Currency Assets 

It is possible to modify the formula such that it is appropriate for pricing options on underlying 

assets that are not necessarily stocks. From the 𝑑1 variable 

𝑑1 =
ln (

𝑆
𝐾
) + (𝑟 − 𝛿 +

1
2
𝜎2) 𝑇

𝜎√𝑇
 

We can see that  

ln (
𝑆𝑒−𝛿𝑇

𝐾𝑒−𝑟𝑇
) = −𝛿𝑇 + ln 𝑆 − ln𝐾 + 𝑟𝑇  

Using this, we can see that 

ln (
𝑆𝑒−𝛿𝑇

𝐾𝑒−𝑟𝑇
) +

1

2
𝜎2𝑇 = ln (

𝑆

𝐾
) + (𝑟 − 𝛿 +

1

2
𝜎2) 𝑇 

Then, 𝑑1 can be rewritten as 

𝑑1 =
ln (
𝑆𝑒−𝛿𝑇

𝐾𝑒−𝑟𝑇
) +

1
2
𝜎2𝑇

𝜎√𝑇
 

We recognize the terms 𝑆𝑒−𝛿𝑇 and 𝐾𝑒−𝑟𝑇 as the prepaid forward prices on the stock and 

the strike. Using this, we can rewrite the Black-Scholes formula to  

 

𝐶(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) = 𝐹0,𝑇
𝑃 (𝑆)𝑁(𝑑1) − 𝐹0,𝑇

𝑃 (𝐾)𝑁(𝑑2) 

𝑑1 =
ln (𝐹0,𝑇

𝑃 (𝑆)/𝐹0,𝑇
𝑃 (𝐾)) + (

1
2
𝜎2)𝑇

𝜎√𝑇
 

𝑑2 = 𝑑1 − 𝜎√𝑇 

This provides a general formula for option pricing on other assets in terms of prepaid forward 

prices. One example on such assets are currency assets. Let 𝑥0 be the spot exchange rate. 

Recognizing the prepaid forward on the currency as 

𝐹0,𝑇
𝑃 (𝑥) = 𝑥0𝑒

−𝑟𝑓𝑇 
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The Black-Scholes formula for currencies becomes 

𝐶(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿) = 𝑥0𝑒
−𝑟𝑓𝑇𝑁(𝑑1) − 𝐾𝑒

−𝑟𝑇(𝐾)𝑁(𝑑2) 

𝑑1 =
ln(𝑥0𝑒

−𝑟𝑓𝑇/𝐾𝑒−𝑟𝑇) + (
1
2
𝜎2) 𝑇

𝜎√𝑇
 

𝑑2 = 𝑑1 − 𝜎√𝑇 

Deriving the Option Greeks: A preliminary result 

The general Black-Scholes formula with time to maturity 𝑇 − 𝑡 is given as  

𝐶(𝑆, 𝐾, 𝜎, 𝑟, 𝑇 − 𝑡, 𝛿) = 𝑆𝑒−𝛿(𝑇−𝑡)𝑁(𝑑1) − 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2) 

𝑃(𝑆, 𝐾, 𝜎, 𝑟, 𝑇 − 𝑡, 𝛿) = 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(−𝑑2) − 𝑆𝑒
−𝛿(𝑇−𝑡)𝑁(−𝑑1) 

𝑑1 =
ln (

𝑆
𝐾
) + (𝑟 − 𝛿 +

1
2
𝜎2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡 

Where 𝑁(⋅) is the cumulative standard normal distribution function. We use the result that 

for any 𝑥,  

𝑁′(𝑥) =
1

√2𝜋
𝑒−
1
2
𝑥2

 

To derive the option Greeks, we first must derive an important preliminary result. We will 

show that 

𝑆𝑒−𝛿(𝑇−𝑡)𝑁′(𝑑1) − 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁′(𝑑2) = 0 

To prove this, we must show that  

𝑆𝑒−𝛿(𝑇−𝑡)
1

√2𝜋
𝑒−
1
2
𝑑1
2

= 𝐾𝑒−𝑟(𝑇−𝑡)
1

√2𝜋
𝑒−
1
2
𝑑2
2

 

We proceed by simplifying terms.  

𝑆𝑒−𝛿(𝑇−𝑡)𝑒−
1
2
𝑑1
2

= 𝐾𝑒−𝑟(𝑇−𝑡)𝑒−
1
2
𝑑2
2
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𝑆𝑒−𝛿(𝑇−𝑡)

𝐾𝑒−𝑟(𝑇−𝑡)
= 𝑒

1
2
(𝑑1
2−𝑑2

2)
 

Taking the natural log on each side gives 

ln 𝑆 − 𝛿(𝑇 − 𝑡) − ln𝐾 − (𝑟(𝑇 − 𝑡)) =
1

2
(𝑑1
2 − 𝑑2

2) 

ln (
𝑆

𝐾
) + (𝑟 − 𝛿)(𝑇 − 𝑡) =

1

2
(𝑑1
2 − 𝑑2

2) 

Using the quadratic formula on the right-hand side 

ln (
𝑆

𝐾
) + (𝑟 − 𝛿)(𝑇 − 𝑡) =

1

2
(𝑑1 − 𝑑2)(𝑑1 + 𝑑2) 

Using the definition of 𝑑1 and 𝑑2, we see that 

𝑑1 − 𝑑2 = 𝜎√𝑇 − 𝑡 

𝑑1 + 𝑑2 = 2𝑑1 − 𝜎√𝑇 − 𝑡 

Then,  

1

2
(𝑑1 − 𝑑2)(𝑑1 + 𝑑2) =

1

2
(𝜎√𝑇 − 𝑡)(2𝑑1 − 𝜎√𝑇 − 𝑡) 

Expanding the terms on the right-hand side gives 

1

2
(𝑑1 − 𝑑2)(𝑑1 + 𝑑2) = 𝑑1𝜎√𝑇 − 𝑡 −

1

2
𝜎2(𝑇 − 𝑡) 

Insert for 𝑑1 on the right-hand side 

1

2
(𝑑1 − 𝑑2)(𝑑1 + 𝑑2) =

ln (
𝑆
𝐾
) + (𝑟 − 𝛿 +

1
2
𝜎2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
⋅ 𝜎√𝑇 − 𝑡 −

1

2
𝜎2(𝑇 − 𝑡) 

Simplifying terms give  

1

2
(𝑑1 − 𝑑2)(𝑑1 + 𝑑2) = ln (

𝑆

𝐾
) + (𝑟 − 𝛿)(𝑇 − 𝑡) 

Which completes the proof.  
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Option Greeks: Delta 

The option Greeks are expressions for the changes in the option prices when the parameters 

in the Black-Scholes model are changed slightly.  

We begin by deriving the Black-Scholes delta. This expression gives the change in the 

option price when the underlying asset changes with one unit (say, one dollar).  

Formally, the call option delta is  

Δ𝐶 =
𝜕𝐶

𝜕𝑆
= 𝑒−𝛿(𝑇−𝑡)𝑁(𝑑1) + 𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1

𝜕𝑑1
𝜕𝑆

− 𝐾𝑒−𝑟(𝑇−𝑡)
𝜕𝑁(𝑑2)

𝜕𝑑2

𝜕𝑑2
𝜕𝑆

 

Since  

𝑆𝑒−𝛿(𝑇−𝑡)𝑁′(𝑑1) = 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁′(𝑑2) 

We write  

Δ𝐶 =
𝜕𝐶

𝜕𝑆
= 𝑒−𝛿(𝑇−𝑡)𝑁(𝑑1) + 𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1

𝜕𝑑1
𝜕𝑆

− 𝑆𝑒−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1

𝜕𝑑2
𝜕𝑆

 

Δ𝐶 =
𝜕𝐶

𝜕𝑆
= 𝑒−𝛿(𝑇−𝑡)𝑁(𝑑1) + 𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1
(
𝜕𝑑1
𝜕𝑆

−
𝜕𝑑2
𝜕𝑆
)

⏟        
=0

 

Δ𝐶 =
𝜕𝐶

𝜕𝑆
= 𝑒−𝛿(𝑇−𝑡)𝑁(𝑑1) > 0 

We derive the put option delta through the Put-Call parity. Since 

𝐶 + 𝑃𝑉(𝐾) = 𝑃 + 𝑆𝑒−𝛿(𝑇−𝑡) 

𝑃 = 𝐶 + 𝐾𝑒−𝑟(𝑇−𝑡) − 𝑆𝑒−𝛿(𝑇−𝑡) 

Then  

Δ𝑃 =
𝜕𝑃

𝜕𝑆
=
𝜕𝐶

𝜕𝑆
− 𝑒−𝛿(𝑇−𝑡) 

Δ𝑃 = 𝑒
−𝛿(𝑇−𝑡)𝑁(𝑑1) − 𝑒

−𝛿(𝑇−𝑡) < 0 

Δ𝑃 = 𝑒
−𝛿(𝑇−𝑡)(1 − 𝑁(𝑑1)) < 0 

Δ𝑃 = 𝑒
−𝛿(𝑇−𝑡)𝑁(−𝑑1) < 0 

 



53 
 

The delta is always positive for a call option which is intuitive as the option payoff increases 

linearly with the stock price. In fact, Δ𝐶 ∈ [0, 1]. The delta will approach 1 when the option is 

deep in-the-money, the reason being that the payoff (𝑆𝑇 − 𝐾) → 𝑆𝑇 when 𝑆𝑇 becomes 

large. Therefore, given the strike 𝐾, the call option tends to the underlying asset in terms of 

payoff when the asset price becomes large relative to the strike. Then, Δ𝐶 → 1. For a put 

option delta, we have Δ𝑃 ∈ [−1, 0].  

When the call option is deep out-of-the-money, a dollar increase in the underlying asset will 

have little effect on the payoff on the call. It will therefore resemble a payoff like that of 

holding nothing, that is, a zero payoff. In this case, Δ𝐶 → 0. 

The delta will also be different on options with different maturities. When 𝑇 increases, we 

would expect the delta to increase when the stock price is low because the probability of a 

positive payoff will increase. However, if the stock price is high, the probability of landing out-

of-the money increases. In this case, the delta would fall.  

 

Another feature of the delta is that it can be interpreted as a share equivalent. This means 

that the delta will tell us how many units of the underlying asset we need to replicate the 

option payoff. The synthetic call option is replicated by  

𝑆Δ + 𝐵 = 𝑆𝑒−𝛿𝑇𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2) 

Since Δ𝐶 = 𝑒
−𝛿(𝑇−𝑡)𝑁(𝑑1), it is clear that  

𝐵 = −𝐾𝑒−𝑟𝑇𝑁(𝑑2) 
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So, if we want to replicate the call option, we must purchase 𝑒−𝛿(𝑇−𝑡)𝑁(𝑑1) units of the 

stock and borrow  𝐾𝑒−𝑟𝑇𝑁(𝑑2) dollars.  

Option Greeks: Gamma 

The gamma is the second derivative of the option price with respect to 𝑆, or equivalently the 

first derivative of the delta. The delta captures the curvature of the price change of the option. 

Formally,  

Γ𝐶 =
𝜕2𝐶

𝜕𝑆2
=
𝜕Δ𝐶
𝜕𝑆

 

Γ𝐶 = 𝑒
−𝛿(𝑇−𝑡)

𝜕𝑁(𝑑1)

𝜕𝑑1

𝜕𝑑1
𝜕𝑆

 

Γ𝐶 = 𝑒
−𝛿(𝑇−𝑡)

𝜕𝑁(𝑑1)

𝜕𝑑1
(

1

𝑆𝜎√𝑇 − 𝑡
) 

Γ𝐶 =
𝑒−𝛿(𝑇−𝑡)

𝑆𝜎√𝑇 − 𝑡
𝑁′(𝑑1) > 0 

Using the put-call parity 

𝐶 + 𝐾𝑒−𝑟(𝑇−𝑡) = 𝑃 + 𝑆𝑒−𝛿(𝑇−𝑡) 

Then 

Γ𝑃 = Γ𝐶 > 0 

Note that the gamma is equal whether it is a put or call. We can also argue intuitively that the 

gamma will tend to zero when the option is either deep in-the-money or deep out-of-the-

money because an additional change in the stock price will have little effect on the value of 

the option. Therefore, we would expect that the gamma is large when the stock price is 

somewhere around the strike price.  

Option Greeks: Theta 

The theta measures the price change with respect to the current time 𝑡. This is simply  

Θ𝐶 =
𝜕𝐶

𝜕𝑡
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Θ𝐶 = 𝛿𝑆𝑒
−𝛿(𝑇−𝑡)𝑁(𝑑1) + 𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1

𝜕𝑑1
𝜕𝑡
− 𝑟𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)

− 𝐾𝑒−𝑟(𝑇−𝑡)
𝜕𝑁(𝑑2)

𝜕𝑑2

𝜕𝑑2
𝜕𝑡

 

Since  

𝑆𝑒−𝛿(𝑇−𝑡)𝑁′(𝑑1) = 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁′(𝑑2) 

We write  

Θ𝐶 = 𝛿𝑆𝑒
−𝛿(𝑇−𝑡)𝑁(𝑑1) + 𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1
(
𝜕𝑑1
𝜕𝑡
−
𝜕𝑑2
𝜕𝑡
) − 𝑟𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) 

Since  

𝜕𝑑1
𝜕𝑡
−
𝜕𝑑2
𝜕𝑡

= −
𝜎

2√𝑇 − 𝑡
 

Θ𝐶 = 𝛿𝑆𝑒
−𝛿(𝑇−𝑡)𝑁(𝑑1) − 𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1

𝜎

2√𝑇 − 𝑡
− 𝑟𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) 

Using the put call parity, the put option theta becomes 

𝐶 + 𝐾𝑒−𝑟(𝑇−𝑡) = 𝑃 + 𝑆𝑒−𝛿(𝑇−𝑡) 

𝜕𝑃

𝜕𝑡
=
𝜕𝐶

𝜕𝑡
+ 𝑟𝐾𝑒−𝑟(𝑇−𝑡) + 𝛿𝑆𝑒−𝛿(𝑇−𝑡) 

Θ𝑃 = 𝛿𝑆𝑒
−𝛿(𝑇−𝑡)𝑁(𝑑1) − 𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1

𝜎

2√𝑇 − 𝑡
− 𝑟𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) + 𝑟𝐾𝑒

−𝑟(𝑇−𝑡) + 𝛿𝑆𝑒−𝛿(𝑇−𝑡) 

Θ𝑃 = Θ𝐶 + 𝑟𝐾𝑒
−𝑟(𝑇−𝑡) + 𝛿𝑆𝑒−𝛿(𝑇−𝑡) 

The effect of time is not obvious for options. Generally, one would expect that options 

become less valuable as time to expiration 𝑇 − 𝑡 decreases, that is, a negative theta. This is 

simply because a small 𝑇 − 𝑡 limits the upside potential such that it is unlikely that 𝑆𝑇 − 𝐾 

or 𝐾 − 𝑆𝑇 can get significantly large. However, the time decay effect can be positive in some 

special cases.  
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Option Greeks: Vega 

The vega measures the price changes when the volatility of the underlying asset changes by 

one unit (say, 1 percentage point).  

𝑉𝐶 =
𝜕𝐶

𝜕𝜎
 

𝑉𝐶 = 𝑆𝑒
−𝛿(𝑇−𝑡)

𝜕𝑁(𝑑1)

𝜕𝑑1

𝜕𝑑1
𝜕𝜎

− 𝐾𝑒−𝑟(𝑇−𝑡)
𝜕𝑁(𝑑2)

𝜕𝑑2

𝜕𝑑2
𝜕𝜎

 

Since  

𝑆𝑒−𝛿(𝑇−𝑡)𝑁′(𝑑1) = 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁′(𝑑2) 

𝑉𝐶 = 𝑆𝑒
−𝛿(𝑇−𝑡) (

𝜕𝑑1
𝜕𝜎

−
𝜕𝑑2
𝜕𝜎
)𝑁′(𝑑1)  

We find that 

𝜕𝑑1
𝜕𝜎

−
𝜕𝑑2
𝜕𝜎

= √𝑇 − 𝑡 

So,  

𝑉𝐶 = 𝑆𝑒
−𝛿(𝑇−𝑡)𝑁′(𝑑1)√𝑇 − 𝑡 > 0 
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Volatility does not enter the Put-Call parity besides in the option prices. Then, 

𝑉𝐶 = 𝑉𝑃 

Higher volatility in the option price will raise its value as a compensation for taking on risk, so 

the vega must be positive. We would expect vega to be large when the stock is fluctuating at 

the strike price because the probability of being out of the money is large. If the option is 

deep in-the-money or out-of-the-money, the probability of remaining in that state is high, so 

vega should be small around these stock prices.  

 

Option Greeks: Rho 

The rho measures the price change of the option when the risk-free rate changes by one 

unit.  

𝜌𝐶 =
𝜕𝐶

𝜕𝑟
 

𝜌𝐶 =  𝑆𝑒
−𝛿(𝑇−𝑡)

𝜕𝑁(𝑑1)

𝜕𝑑1

𝜕𝑑1
𝜕𝑟
+ (𝑇 − 𝑡)𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) − 𝐾𝑒

−𝑟(𝑇−𝑡)
𝜕𝑁(𝑑2)

𝜕𝑑2

𝜕𝑑2
𝜕𝑟

 

Since  

𝑆𝑒−𝛿(𝑇−𝑡)𝑁′(𝑑1) = 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁′(𝑑2) 

𝜌𝐶 = (𝑇 − 𝑡)𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2) +  𝑆𝑒

−𝛿(𝑇−𝑡)
𝜕𝑁(𝑑1)

𝜕𝑑1
(
𝜕𝑑1
𝜕𝑟
−
𝜕𝑑2
𝜕𝑟
)

⏟        
=0

 

𝜌𝐶 = (𝑇 − 𝑡)𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2) > 0 

Using the Put-Call parity 

𝐶 + 𝐾𝑒−𝑟(𝑇−𝑡) = 𝑃 + 𝑆𝑒−𝛿(𝑇−𝑡) 
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The put option rho becomes 

𝜕𝑃

𝜕𝑟
=
𝜕𝐶

𝜕𝑟
+ (𝑡 − 𝑇)𝐾𝑒−𝑟(𝑇−𝑡) 

𝜌𝑃 = (𝑇 − 𝑡)𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2) + (𝑡 − 𝑇)𝐾𝑒

−𝑟(𝑇−𝑡) 

𝜌𝑃 = (𝑇 − 𝑡)(𝑁(𝑑2) − 1)𝐾𝑒
−𝑟(𝑇−𝑡) 

𝜌𝑃 = −(𝑇 − 𝑡)𝑁(−𝑑2)𝐾𝑒
−𝑟(𝑇−𝑡) < 0 

We scale the effect to a change of 1 percentage point by dividing the rho by 100.  

The rho is positive for a call option. When exercising the call, the investor pays the strike 

price to receive the underlying. When the interest rate increases, the present value of the 

strike decreases which increases the present value of the payoff, all else equal. For a put 

option, the rho is negative. A long position in a put entitles the investor to receive the strike 

for the asset. A higher interest rate reduces the present value of this payoff and will therefore 

imply a fall in the price of the put option. 

Implied Volatility 

One of the inputs in the Black-Scholes option pricing formula is the volatility 𝜎.  One 

alternative is finding an accurate estimate of future volatility. Another alternative is to infer the 

volatility from the option prices in the options market.  An option’s implied volatility is the 

volatility that yields the observed option price. Let  �̂� be the current option price traded in the 

market. Then,  

�̂� = 𝐶(𝑆, 𝐾, 𝜎𝑖𝑚𝑝𝑙𝑖𝑒𝑑 , 𝑟, 𝑇 − 𝑡, 𝛿) 

Where 𝜎𝑖𝑚𝑝𝑙𝑖𝑒𝑑 is the volatility that returns the current market price. One important detail is 

that implied volatility does not make a claim on whether the option price is accurate or not, it 

simply infers the market’s assessment of the volatility. Implied volatilities cannot be found 

directly using the Black-Scholes formula, so you would have to use some sort of numerical 

procedure.  
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Market-Making and Delta Hedging 

A market-maker is an agent who sells to buyers and buy from sellers. The market-maker 

makes profits by buying financial assets at the bid price and selling them at the ask price. 

This margin is called the bid-ask spread. Since market-makers are only after profits from the 

bid-ask spread, they will actively hedge any financial risk associated with the assets they are 

purchasing. One specific type of hedge is the delta hedge. This hedging strategy involves 

taking an offsetting position in equities to hedge against the risk related to the movement of 

the underlying assets. A delta hedged position is often not a zero-value position. Therefore, 

the market-maker must have sufficient capital to cover the position. Since this position 

eliminates the financial risk, the delta-hedged position should earn the market-maker the risk-

free rate.  

Suppose that the market-maker has written a call option on one share at 𝑡 = 0 with a price 

of 𝐶0 with no intentions of hedging against this position. Since Δ0 > 0, the call option will 

increase if the stock price increases. If the stock prices increase at time 𝑡 = 1, the option 

price has increased to 𝐶1. The profit is measured by marking-to-market the position, that is, 

the profit to the market-maker if the position was liquidated today. This one-day profit would 

be 

𝑀𝑇𝑀1 = 𝐶0 − 𝐶1 

Which would be negative if the stock price had increased. With no hedging, the market-

maker would have to accept this loss if the position were liquidated.  Alternatively, the 

market-maker can delta hedge its position by purchasing an off-setting number of shares. As 

previously discussed, the delta of an option (in addition to borrowing) gives the number of 

shares that replicate the option payoff. 

We can derive an expression for the day-to-day profit of a market-maker that delta hedges its 

position. Let Δ𝑖  be the option delta on day 𝑖, 𝑆𝑖  the day 𝑖 stock price, 𝐶𝑖  the day 𝑖 option 

price and 𝑀𝑉𝑖  the market value of the portfolio on day 𝑖.  

For every short position on an option, the market-maker hedges the position purchasing 

Δ𝑖𝑆𝑖 . The borrowing capacity is then the amount that must be covered by borrowing at the 

risk-free rate. The borrowing capacity on day 𝑖 is  

𝑀𝑉𝑖 = Δ𝑖𝑆𝑖 − 𝐶𝑖 
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This makes it clear that if 𝑀𝑉𝑖 > 0, the market-maker must borrow to cover the position. The 

day-to-day change in the borrowing capacity is 

Δ𝑀𝑉𝑖 = 𝑀𝑉𝑖 −𝑀𝑉𝑖−1 = Δ𝑖𝑆𝑖 − 𝐶𝑖 − (Δ𝑖−1𝑆𝑖−1 − 𝐶𝑖−1) 

The cost of purchasing additional shares is  

𝑆𝑖(Δ𝑖 − Δ𝑖−1) 

The interest owed on day 𝑖 is the interest rate on the previous day’s borrowing capacity 

𝑟𝑀𝑉𝑖−1 

We can then see that if 𝑀𝑉𝑖−1 > 0, the market-maker must pay 𝑟𝑀𝑉𝑖−1 in interest the next 

day.   

Using this, the net cash flow on day 𝑖 is the change in market value of the portfolio at day 𝑖 

less the rebalancing at day 𝑖 and borrowing costs from day 𝑖 − 1 

𝑁𝐶𝐹𝑖 = 𝑀𝑉𝑖 −𝑀𝑉𝑖−1⏟        
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

− 𝑟𝑀𝑉𝑖−1⏟    
𝐵𝑜𝑟𝑟𝑜𝑤𝑖𝑛𝑔

− 𝑆𝑖(Δ𝑖 − Δ𝑖−1)⏟        
𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔

 

𝑁𝐶𝐹𝑖 = Δ𝑖𝑆𝑖 − 𝐶𝑖 − (Δ𝑖−1𝑆𝑖−1 − 𝐶𝑖−1) − 𝑟𝑀𝑉𝑖−1 − 𝑆𝑖(Δ𝑖 − Δ𝑖−1) 

𝑁𝐶𝐹𝑖 = Δ𝑖−1𝑆𝑖 − 𝐶𝑖 − (Δ𝑖−1𝑆𝑖−1 − 𝐶𝑖−1) − 𝑟𝑀𝑉𝑖−1 

𝑁𝐶𝐹𝑖 = Δ𝑖−1(Δ𝑆𝑖) + Δ𝐶𝑖 − 𝑟𝑀𝑉𝑖−1 

A hedged portfolio that never requires additional cash investment to remain hedged is self-

financing. This occurs when 𝑁𝐶𝐹𝑖 = 0 ∀ 𝑖.  
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Gamma Hedging 
One of the issues with delta hedging in the manner above is that delta changes with the 

stock price. This is the effect of gamma, as previously discussed. So, when the market-

maker hedges by purchasing Δ𝑖𝑆𝑖  shares at day 𝑖, the position will not be perfectly hedged 

on day 𝑖 + 1. One way to remedy this is to use the delta-gamma approximation which 

accounts for the curvature in the option price as a function of the stock price. Recall that the 

second order Taylor polynomial is 

𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓
′(𝑥0)(𝑥 − 𝑥0) +

1

2
𝑓′′(𝑥0)(𝑥 − 𝑥0)

2 

Let 𝑓(𝑥) = 𝐶(𝑆1) and 𝑥0 = 𝑆0. If 𝜖 = 𝑆1 − 𝑆0 is small, we can write   

𝐶(𝑆1) ≈ 𝐶(𝑆0) + Δ0(𝑆1 − 𝑆0) +
1

2
Γ0(𝑆1 − 𝑆0)

2 

𝐶(𝑆1) ≈ 𝐶(𝑆0) + Δ0𝜖 +
1

2
Γ0𝜖

2 
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Chapter 8: Exotic Options 

Exotic options are non-standard options with more complicated payoff structures. We will 

look at different exotic options.  

Currency Options 

A currency option is an option in which a currency is the underlying asset. While currency 

options are not exotic, I have added them here for simplicity.  

We say that the currency option is dollar-denominated if the strike price and premium are 

quoted in dollars. Similarly, an option with strike and premium quoted in euros is a euro-

denominated option. A dollar-denominated option, for instance, could be thought of as being 

based on one unit of a foreign currency.  

Currency options have the property that calls can be converted to puts and vice versa. Since 

purchasing one dollar is equivalent to selling one euro, the right to buy one dollar is 

equivalent to the right to sell one euro. Therefore, puts in one currency are equivalent to calls 

in the other currency.  

Let 𝑥0 be the USD/EUR exchange rate for instance. Then the call and put prices are related 

by  

𝐶𝑈𝑆(𝑥0, 𝐾, 𝑇) = 𝑥0𝐾𝑃𝐸𝑈 (
1

𝑥0
,
1

𝐾
, 𝑇) 

 

Asian Options 

An Asian option is an option where the payoff depends on the average price over some 

period. In this case, the average asset price can either be used as the asset price or the 

strike price. The average is question can either be the arithmetic average 

𝑆𝑎 =
1

𝑁
∑𝑆𝑡−𝑖

𝑁

𝑖=0

 

Or the geometric average 

𝑆𝑔 = (∏𝑆𝑡−𝑖

𝑁

𝑖=0

)

1/𝑁
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Therefore, when defining an Asian option, the following characteristics must be defined 

• Is it a put or call? 

• Is the average price used as a strike or as an asset? 

• Is the average geometric or arithmetic? 

We can then create eight types of Asian options following these characteristics 

Asian Option Type Payoff 

Geometric average price call max(0, 𝑆𝑔 − 𝐾) 

Geometric average price put max (0, 𝐾 − 𝑆𝑔) 

Geometric average strike call max (0, 𝑆𝑇 − 𝑆𝑔) 

Geometric average strike put max(0, 𝑆𝑔 − 𝑆𝑇) 

Arithmetic average price call max (0, 𝑆𝑎 − 𝐾) 

Arithmetic average price put max (0, 𝐾 − 𝑆𝑎) 

Arithmetic average strike call max(0, 𝑆𝑇 − 𝑆𝑎) 

Arithmetic average strike put max(0, 𝑆𝑎 − 𝑆𝑇) 

 

Barrier Options 

A barrier option has a payoff that depends on whether the price of the underlying reaches a 

specified level. This specified level is called the barrier. There are various types of barrier 

options 

Barrier Option Type Explanation 

Knock-out option: Down-and-out The option becomes worthless if the asset 

price must fall to reach the barrier 

Knock-out option: Up-and-out The option becomes worthless if the asset 

price must increase to reach the barrier 

Knock-in option: Up-and-in The option gives a payoff if the asset price 

must increase to reach the barrier 

Knock-in option: Down-and-in The option gives a payoff if the asset price 

must fall to reach the barrier 
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There is a simple relationship between knock-in and knock-out options that are otherwise 

equal, that is, they have the same barrier 𝐻, strike 𝐾 and maturity 𝑇. Consider a portfolio of 

one knock-out and one knock-in option. If the barrier is never breached before maturity, the 

knock-out option will give a payoff like a vanilla option while the knock-in option pays nothing. 

Similarly, if the barrier is breached, the knock-in option pays like a vanilla option while the 

knock-out pays nothing. Therefore, we can write 

𝐾𝑛𝑜𝑐𝑘 − 𝑜𝑢𝑡 − 𝑐𝑎𝑙𝑙 + 𝐾𝑛𝑜𝑐𝑘 − 𝑖𝑛 − 𝑐𝑎𝑙𝑙 = 𝑉𝑎𝑛𝑖𝑙𝑙𝑎 𝑐𝑎𝑙𝑙 

𝐾𝑛𝑜𝑐𝑘 − 𝑜𝑢𝑡 − 𝑝𝑢𝑡 + 𝐾𝑛𝑜𝑐𝑘 − 𝑖𝑛 − 𝑝𝑢𝑡 = 𝑉𝑎𝑛𝑖𝑙𝑙𝑎 𝑝𝑢𝑡 

Since option prices can never be negative, it becomes clear that a vanilla option is at least as 

costly as a barrier option.  

Compound Options 

A compound option is an option to buy an option. Such options complicate the payoff 

because there are two strike prices and two expiration dates, one for the underlying option 

and one for the compound option.  

Suppose we are at time 𝑡0 and that we have a compound option which at time 𝑡1 will give us 

the right to pay 𝑥 for a European call with strike 𝐾 that expires at 𝑇, 𝑇 > 𝑡1. If we exercise 

the compound call at 𝑡1, then the value of the underlying option we receive is 𝐶(𝑆, 𝐾, 𝑇 −

𝑡1). At time 𝑇, this option will have the value of a standard call, max (0, 𝑆𝑇 − 𝐾). Therefore, 

the time 𝑡1 value of the compound call is  

max(𝐶(𝑆𝑡1 , 𝐾, 𝑇 − 𝑡1) − 𝑥, 0) 

Therefore, we will only exercise the compound if the stock price at 𝑡1 is sufficiently large. 

That is, larger than the compound strike 𝑥.  Let 𝑆∗ be the stock price at which 𝑆 > 𝑆∗ makes 

it optimal to exercise the compound call. Then, 𝑆∗ satisfies 

𝐶(𝑆∗, 𝐾, 𝑇 − 𝑡1) = 𝑥 
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Gap Options 

A gap option is an option with a payoff that is determined by a trigger price 

𝐶𝑎𝑙𝑙 𝑝𝑎𝑦𝑜𝑓𝑓 = {
𝑆𝑇 − 𝐾1,
0,

 𝑆𝑇 > 𝐾2 
𝑒𝑙𝑠𝑒

 

𝑃𝑢𝑡 𝑝𝑎𝑦𝑜𝑓𝑓 = {
𝐾1 − 𝑆𝑇 ,
0,

 𝑆𝑇 > 𝐾2 
𝑒𝑙𝑠𝑒

 

For the vanilla options, the strike and the trigger coincided while the gap option considers 

separate values of these. An important detail about gap options is that the exercise is forced, 

which is why we have dropped the max notation for the payoff. Since the exercise is forced, 

gap options are not really options in the sense that they have to be exercised regardless.  

The pricing formula is a slight modification of the Black-Scholes formula. Let 𝐾1 be the strike 

price and 𝐾2 the trigger price. The pricing formula for a call option is then 

𝐶(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) = 𝑆𝑒
−𝛿𝑇𝑁(𝑑1) − 𝐾1𝑒

−𝑟𝑇𝑁(𝑑2) 

𝑑1 =
ln (

𝑆𝑒−𝛿𝑇

𝐾2𝑒
−𝑟𝑇) +

1
2
𝜎2𝑇

𝜎√𝑇
 

𝑑2 = 𝑑1 − 𝜎√𝑇 

Using the Put-Call parity, we can derive the price for a gap-put.  

𝐶(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) + 𝐾𝑒
−𝑟𝑇 = 𝑃(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) + 𝑆𝑒

−𝛿𝑇 

𝑃(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) = 𝐶(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) + 𝐾1𝑒
−𝑟𝑇 − 𝑆𝑒−𝛿𝑇 

𝑃(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) = 𝑆𝑒
−𝛿𝑇𝑁(𝑑1) − 𝐾1𝑒

−𝑟𝑇𝑁(𝑑2) + 𝐾1𝑒
−𝑟𝑇 − 𝑆𝑒−𝛿𝑇 

𝑃(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) = 𝑆𝑒
−𝛿𝑇(𝑁(𝑑1) − 1) + 𝐾1𝑒

−𝑟𝑇(1 − 𝑁(𝑑2)) 

𝑃(𝑆, 𝐾1, 𝐾2, 𝜎, 𝑟, 𝑇, 𝛿) = 𝐾1𝑒
−𝑟𝑇𝑁(−𝑑2) − 𝑆𝑒

−𝛿𝑇𝑁(−𝑑1) 
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European Exchange Options 

An exchange option is an option with the payoff 

max (0, 𝑆𝑇
1 − 𝑆𝑇

2) 

where 𝑆𝑇
1, 𝑆𝑇

2 are both risky assets. Therefore, the option will only pay off if the underlying 

asset 𝑆1 outperforms the benchmark asset 𝑆𝑇
2.  

Let 𝑆𝑡
1 and 𝑆𝑡

2 be the market price on the two assets with respective dividend yields 𝛿1, 𝛿2 

and volatilities 𝜎1, 𝜎2. Let 𝜌 denote the correlation between the two asset returns. Then the 

value of the exchange option is given as 

𝑉 = 𝑒−𝛿1𝑇𝑆1𝑁(�̃�1) − 𝑒
−𝛿2𝑇𝑆2𝑁(�̃�2) 

�̃�1 =
(ln (

𝑆1

𝑆2
) + (𝛿2 − 𝛿1 +

1
2
𝜎2)𝑇)

𝜎√𝑇
 

�̃�2 = �̃�1 − 𝜎√𝑇 

𝜎2 = 𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2 

The exchange option pricing formula collapses to the standard Black-Scholes formula for a 

call option if 𝛿2 = 𝑟 and 𝜎2 = 0, that is, when the benchmark asset is considered risk-free. 

If we instead set 𝛿1 = 𝑟 and 𝜎1 = 0 the formula instead reduces to the Black-Scholes 

formula for a put option.    
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Perpetual American Options 

Perpetual options are options that never expire. Since the time to expiration is infinity, the 

exercise problem will look the same in each period. The optimal exercise strategy for 

perpetual American options is to pick the exercise barrier that maximizes the option price and 

then exercising the option the first time the stock price reaches the barrier.  

Define  

ℎ1 =
1

2
−
𝑟 − 𝛿

𝜎2
+√(

𝑟 − 𝛿

𝜎2
−
1

2
)
2

+
2𝑟

𝜎2
 

ℎ2 =
1

2
−
𝑟 − 𝛿

𝜎2
−√(

𝑟 − 𝛿

𝜎2
−
1

2
)
2

+
2𝑟

𝜎2
 

The value of a perpetual American call option 𝐶∞ with strike 𝐾 that is exercised when 𝑆 ≥

𝐻𝐶 is 

𝐶∞ = (𝐻𝐶 − 𝐾) (
𝑆

𝐻𝐶
)
ℎ1

 

Where  

𝐻𝐶 = 𝐾 (
ℎ1

ℎ1 − 1
) 

Then 

𝐶∞ = (𝐾 (
ℎ1

ℎ1 − 1
) − 𝐾)(

𝑆

𝐾 (
ℎ1

ℎ1 − 1
)
)

ℎ1

 

𝐶∞ = 𝐾 (
ℎ1

ℎ1 − 1
− 1)(

1

ℎ1
ℎ1 − 1

)

ℎ1

(
𝑆

𝐾
)
ℎ1

 

𝐶∞ = 𝐾 (
1

ℎ1 − 1
) (
𝑆

𝐾
)
ℎ1

(1 −
1

ℎ1
)
ℎ1
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The value of a perpetual American put 𝑃∞ that is exercised when 𝑆 ≤ 𝐻𝑃 is 

𝑃∞ = (𝐾 − 𝐻𝑃) (
𝑆

𝐻𝑃
)
ℎ2

 

Where 

𝐻𝑃 = 𝐾 ⋅
ℎ2

ℎ2 − 1
 

Using this, the option value can be written as 

𝑃∞ = (𝐾 − 𝐾 ⋅
ℎ2

ℎ2 − 1
)(

𝑆

𝐾 ⋅
ℎ2

ℎ2 − 1

)

ℎ2

 

𝑃∞ = 𝐾 (1 −
ℎ2

ℎ2 − 1
) (
𝑆

𝐾
)
ℎ2

(
ℎ2 − 1

ℎ2
)
ℎ2

  

𝑃∞ = −
𝐾

ℎ2 − 1
(
𝑆

𝐾
)
ℎ2

(1 −
1

ℎ2
)
ℎ2
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Chapter 9:  Basic Probability Theory 

The Normal Distribution 

A random variable �̃� is normally distributed if the probability that �̃� takes on a value is 

described by the normal density function  

𝜙(𝑥, 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒−
1
2
(
𝑥−𝜇
𝜎
)
2

 

Where 𝜇 and 𝜎 is the mean and standard deviation of the random variable, respectively. A 

special case of this function is the standard normal density function which occurs when 

𝜇 = 0 and 𝜎 = 1.  

If �̃� is normally distributed, we write this is  

�̃� ∼ 𝒩(𝜇, 𝜎2) 

We use 𝑧 to represent random variables that follows a standard normal distribution, and we 

write this as 

𝑧 ∼ 𝒩(0,1) 

The normal distribution can be used to compute the probability of different events. However, 

since the density function is continuous (and thus with infinitely many values), the probability 

that �̃� will take on some value 𝑎 is 0. To get around this issue, we will instead compute 

probabilities of ranges. One example is the probability of �̃� being within the interval [𝑎, 𝑏] or 

below 𝑎. The probability that �̃� will take a value below 𝑎 can be found by using the 

cumulative normal distribution function  

𝑁(𝑎) = 𝑃(𝑧 < 𝑎) = ∫
1

√2𝜋
𝑒−
1
2
(𝑥)2

𝑎

−∞
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The symmetry of the normal distribution yields a simple but useful relationship for calculating 

probabilities 

𝑁(𝑎) = 1 − 𝑁(−𝑎) 

Suppose now that we have 𝑛 random variables 𝑥𝑖 , 𝑖 = 1, … , 𝑛 that are jointly distributed 

with mean 𝜇𝑖 , variance 𝜎𝑖
2 and covariance 𝜎𝑖𝑗 . The weighted sum of these variables has a 

mean  

𝐸 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) =∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

 

And variance  

𝑉𝑎𝑟 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) =∑∑𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛

𝑖=1

𝑛

𝑖=1

 

If the random variables are jointly normally distributed, then the sum of the variables are also 

normal. That is,  

∑𝑤𝑖𝑥𝑖 ∼ 𝒩

𝑛

𝑖=1

(∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

,∑∑𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛

𝑖=1

𝑛

𝑖=1

) 

The final important property of the normal distributed is stated in the central limit theorem. 

The CLT states that the sum of 𝑛 independent variables, not necessarily normal, approaches 

the normal distribution as 𝑛 → ∞ provided the variance of the distribution is finite.  

In the context of asset returns, this would that the continuously compounded return is normal 

provided the daily returns are independent of each other.  
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The Lognormal Distribution 

A random variable 𝑦 is lognormally distributed if ln(𝑦) is normally distributed. Suppose 

that 𝑥 is normally distributed, then 𝑦 is lognormal if 𝑦 can be written as 

ln(𝑦) = 𝑥 

Or  

𝑦 = 𝑒𝑥  

This relationship makes a connection between normally distributed returns and lognormality 

of stock prices. Suppose that the continuously compounded return between [0, 𝑡] is normally 

distributed. Then,   

𝑅(0, 𝑡) = ln (
𝑆𝑡
𝑆0
) ∼ 𝒩(𝜇, 𝜎2) 

Exponentiating on both sides give 

𝑆𝑡 = 𝑆0𝑒
𝑅(0,𝑡) ≥ 0 

Which shows that the stock price is lognormally distributed. This makes it clear that a 

lognormal stock price cannot be negative.  

Using the fact that the sum of normal variables is itself normal, we can show that the product 

of lognormal variables is normal. Let 𝑥1 and 𝑥2 be normal. Then 𝑒𝑥1 and 𝑒𝑥2 are lognormal. 

Since  

𝑒𝑥1 ⋅ 𝑒𝑥2 = 𝑒𝑥1+𝑥2 

We see that the product of the lognormal variables must be lognormal since 𝑥1 + 𝑥2 is 

normal.  

Generally, if 𝑥 ∼ 𝒩(𝜇, 𝜎2) then 

𝐸(𝑒𝑥) = 𝑒𝜇+
1
2
𝜎2

 

We can apply this to derive properties for stock prices that are lognormally distributed. Recall 

that if the continuously compounded return between [0, 𝑡] is normally distributed.  

Then,   
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𝑅(0, 𝑡) = ln (
𝑆𝑡
𝑆0
) ∼ 𝒩(𝜇, 𝜎2) 

Exponentiating on both sides give 

𝑆𝑇
𝑆0
= 𝑒𝑅(0,𝑡) 

Suppose now that we have 𝑡0 < 𝑡1 < 𝑡2. Then the stock price at 𝑡1 and 𝑡2 is given as 

𝑆𝑡1 = 𝑆𝑡0𝑒
𝑅(𝑡0,𝑡1) 

𝑆𝑡2 = 𝑆𝑡1𝑒
𝑅(𝑡1,𝑡2) 

Using the 𝑡1 stock price, we see that the 𝑡2 stock price becomes 

𝑆𝑡2 = 𝑆𝑡0𝑒
𝑅(𝑡0,𝑡1)+𝑅(𝑡1,𝑡2) 

Therefore, the continuously compounded return between [0, 𝑡] is the sum of returns over 

each sub-period. If these periods are evenly split with time distance ℎ = 𝑡/𝑛, we can write 

𝑅(0, 𝑡) =∑𝑅((𝑖 − 1)ℎ, 𝑖ℎ)

𝑛

𝑖=1

 

Suppose that these returns are independent and identically distributed with mean 𝜇 and 

variance 𝜎ℎ
2, then  

𝐸[𝑅(0, 𝑡)] = 𝑛𝜇ℎ 

𝑉𝑎𝑟[𝑅(0, 𝑡)] = 𝑛𝜎ℎ
2 

Under these conditions, we see that  

ln (
𝑆𝑡
𝑆0
) ∼ 𝒩(𝑛𝜇ℎ , 𝑛𝜎ℎ

2) 

One common assumption is to assume that  

𝐸(𝑅(0, 𝑡)) = (𝛼 − 𝛿 −
1

2
𝜎2) 𝑡 

𝑉𝑎𝑟(𝑅(0, 𝑡)) = 𝜎2𝑡 
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The Conditional Expectations Operator  

If 𝑆𝑡 is lognormal it is possible to calculate probabilities of future stock prices.  

We have 

𝑆𝑡 = 𝑆0𝑒
𝑅(0,𝑡) 

Then  

ln 𝑆𝑡 = ln 𝑆0 + 𝑅(0, 𝑡) 

𝐸(ln 𝑆𝑡) = 𝐸(ln 𝑆0) + 𝐸(𝑅(0, 𝑡)) 

Assuming that  

𝑅(0, 𝑡) ∼ 𝒩 ([𝑟 − 𝛿 −
1

2
𝜎2] 𝑡, 𝜎2𝑡) 

𝐸(ln 𝑆𝑡) ∼ 𝒩 (ln 𝑆0 + [𝑟 − 𝛿 −
1

2
𝜎2] 𝑡, 𝜎2𝑡) 

We create the standard normal variable 𝑍 by subtracting the mean and dividing by the 

standard deviation  

𝑍 =
ln(𝑆𝑡) − ln 𝑆0 − [𝑟 − 𝛿 −

1
2
𝜎2] 𝑡

𝜎√𝑡
 

Since 𝑆𝑡 < 𝐾 implies ln(𝑆𝑡) < ln(𝐾), we know that 𝑃(𝑆𝑡 < 𝐾) = 𝑃(ln 𝑆𝑡 < ln𝐾). 

Subtract the mean of ln (𝑆𝑡) and divide by the standard deviation of ln(𝑆𝑡) on both sides 

inside the probability operator.  

Then,  

𝑃(𝑆𝑡 < 𝐾) = 𝑃(
ln(𝑆𝑡) − ln 𝑆0 − [𝑟 − 𝛿 −

1
2𝜎

2] 𝑡

𝜎√𝑡
<  
ln(𝐾) − ln 𝑆0 − [𝑟 − 𝛿 −

1
2𝜎

2] 𝑡

𝜎√𝑡
) 

𝑃(𝑆𝑡 < 𝐾) = 𝑃(𝑍 <  
ln(𝐾) − ln 𝑆0 − [𝑟 − 𝛿 −

1
2
𝜎2] 𝑡

𝜎√𝑡
) 

Since 𝑍 ∼ 𝒩(0, 1), we can use the cumulative distribution function to calculate this 

probability.  
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The probability is then  

𝑃(𝑆𝑡 < 𝐾) = 𝑁(−𝑑2) 

And so  

𝑃(𝑆𝑡 > 𝐾) = 1 − 𝑃(𝑆𝑡 ≤ 𝐾)  

𝑃(𝑆𝑡 > 𝐾) = 𝑁(𝑑2) 

Where  

𝑑2 =
ln(𝑆0) − ln𝐾 + [𝑟 − 𝛿 −

1
2
𝜎2] 𝑡

𝜎√𝑡
− 𝜎√𝑡 

We can now use this to calculate the conditional probability. Suppose we want to the 

expected value of the stock price conditional on the stock price being less than 𝐾. This 

expectation is given as 

𝐸(𝑆𝑡|𝑆𝑡 < 𝐾) = 𝑆0𝑒
(𝑟−𝛿)𝑡 ⋅

𝑁(−𝑑1)

𝑁(−𝑑2)
 

Chapter 10: Monte Carlo Valuation 

Many derivatives are easy to value as there are valuation formulas such as the Black-

Scholes formula. However, for some exotic options such as Asian options, such formulas do 

not exist. The binomial approach to pricing such derivatives is time consuming and difficult 

because the options are path dependent. We can use Monte-Carlo simulations to simulate 

future stock prices and discount these to arrive at the price of the option in question.  

One assumption we can make is that the assets will earn the risk-free rate of return on 

average. Using this, we can compute the time 0 value of the option by calculating 

𝑉[𝑆(0), 0] = 𝑒−𝑟𝑇𝐸0
∗[𝑉(𝑆, 𝑇), 𝑇] 

Where 𝑉[𝑆(0), 0] is the time 0 value of the option and 𝐸0
∗[𝑉(𝑆, 𝑇), 𝑇] is the risk-neutral 

expected payoff of the option at time 𝑇. When pricing options using Monte Carlo, we draw 𝑛 

time 𝑇 stock prices 𝑆𝑇
1, … , 𝑆𝑇

𝑛 randomly and discount the option payoffs back to time 0. Then 

we take the average of these payoffs.  
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The time 0 price can be expressed as 

𝑉(𝑆0, 0) =
1

𝑛
𝑒−𝑟𝑇∑𝑉(𝑆𝑇

𝑖 , 𝑇)

𝑛

𝑖=1

 

A call option would for instance have 𝑉(𝑆𝑇
𝑖 , 𝑇) = max(𝑆𝑇

𝑖 − 𝐾, 0). When simulating the 

stock prices, we should expect considerable variation among the individual stock prices from 

each simulation. We can derive an estimate for this variation in the option price. If there are 𝑛 

trials, the Monte Carlo estimate of the option price is  

𝐶�̅� =
1

𝑛
∑𝐶(�̃�𝑖)

𝑛

𝑖=1

 

Where 𝐶(�̃�𝑖) is the option price resulting from the randomly drawn stock price �̃�𝑖. If the stock 

prices are independent and identically distributed, then  

𝑉𝑎𝑟(𝐶�̅�) = 𝑉𝑎𝑟 (
1

𝑛
∑𝐶(�̃�𝑖)

𝑛

𝑖=1

) 

𝑉𝑎𝑟(𝐶�̅�) =
1

𝑛2
(∑𝑉𝑎𝑟 (𝐶(�̃�𝑖))

𝑛

𝑖=1

) 

𝑉𝑎𝑟(𝐶�̅�) =
1

𝑛2
(𝑛𝜎𝐶

2) 

𝜎𝑛
2 =

1

𝑛
𝜎𝐶
2 

𝜎𝑛 =
1

√𝑛
𝜎𝐶

𝑛→∞
→  0 
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Chapter 11: Credit Risk 

Introducing Credit Risk 

Credit risk is the risk associated with the probability of the counterparty failing to meet their 

financial obligations. Failure to make the promised payment is referred to as a default.  

Suppose that a firm with asset value 𝐴0 issues a zero-coupon bond with face value �̅� that 

matures at time 𝑇. Denote 𝐵𝑡 as the market value of the bond at time 𝑡. At time 𝑇, two 

outcomes are possible 

• 𝐴𝑇 > �̅�. The shareholders can repay the bondholders in full. Therefore, 𝐵𝑇 = �̅�. 

• 𝐴𝑇 < �̅�. The shareholders are not able to repay the bondholders in full. They can 

only pay the total assets they own. Therefore, 𝐵𝑇 = 𝐴𝑇. 

Let 𝑔∗(𝐴𝑇 , 𝐴0) denote the risk-neutral probability density for the time 𝑇 asset value 

conditional on the asset value at time 0, 𝐴0. Pricing the initial value of the debt at 𝑡 = 0 

follows a simple concept. The expected payoff at time 𝑇 is the weighted probability of full 

repayment and partial repayment (default) discounted back to 𝑡 = 0. In continuous time, this 

can be expressed as  

𝐵0 = 𝑒
−𝑟𝑇 [∫ 𝐴𝑇𝑔

∗(𝐴𝑇 , 𝐴0)𝑑𝐴𝑇 + �̅�∫ 𝑔∗(𝐴𝑇 , 𝐴0)𝑑𝐴𝑇

∞

�̅�

�̅�

0

] 

𝐵0 = 𝑒
−𝑟𝑇[𝐸∗(𝐴𝑇|𝐴𝑇 < �̅�) ⋅ 𝑃

∗(𝐴𝑇 < �̅�) + �̅�(1 − 𝑃
∗(𝐴𝑇 < �̅�))] 

𝐵0 = 𝑒
−𝑟𝑇[𝐸∗(𝐴𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡) ⋅ 𝑃

∗(𝐷𝑒𝑓𝑎𝑢𝑙𝑡) + �̅�(1 − 𝑃∗(𝐷𝑒𝑓𝑎𝑢𝑙𝑡))] 

𝐵0 = 𝑒
−𝑟𝑇[𝐸∗(𝐴𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡) ⋅ 𝑄 + �̅�(1 − 𝑄)] 

Where  

𝑄 = 𝑃∗(𝐷𝑒𝑓𝑎𝑢𝑙𝑡) 
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We define the recovery rate as the amount the bondholders receive relative to what they are 

owed. When the firm has defaulted, 𝐴𝑇 = 𝐵𝑇. 

Therefore,  

𝐸∗(𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒) =
𝐸∗(𝐴𝑇 = 𝐵𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡)

�̅�
 

𝑅 =
𝐸∗(𝐵𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡)

�̅�
 

The loss given default is the amount that that the bondholders do not receive at default 

relative to what they are owed 

𝐸∗(𝐿𝑜𝑠𝑠 𝑔𝑖𝑣𝑒𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡) =
�̅� − 𝐸∗(𝐵𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡)

�̅�
 

𝐿 =
�̅� − 𝐸∗(𝐵𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡)

�̅�
 

𝐿 = 1 − 𝑅 

With the findings above, we can derive an expression for the credit spread. The credit 

spread is the difference in the yield to maturity on a defaultable bond and an otherwise 

equivalent default-free bond. A default-free bond has  

𝑃∗(𝐴𝑇 < �̅�) = 0 

In this case, the bond price collapses to 

𝐵0
𝑓
= �̅�𝑒−𝑟𝑇 

The yield of this bond is the return over [0, 𝑇], which is defined as 

ln (
�̅�

𝐵0
𝑓) = 𝑟𝑇  

The annualized risk-free yield 𝑟 is found by dividing the return over length of the period.  
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Then,  

𝑟 =
1

𝑇
ln (

�̅�

𝐵0
𝑓)  

Similarly, the annualized yield 𝜌 on a defaultable bond is given as 

𝜌 =
1

𝑇
ln (

�̅�

𝐵0
) 

The credit spread is then 

𝜌 − 𝑟 =
1

𝑇
(ln (

�̅�

𝐵0
) − ln (

�̅�

𝐵0
𝑓) ) 

𝜌 − 𝑟 =
1

𝑇
(ln 𝐵0

𝑓
− ln𝐵0) 

𝜌 − 𝑟 =
1

𝑇
ln (

𝐵0
𝑓

𝐵0
) 

𝜌 − 𝑟 =
1

𝑇
ln (

�̅�𝑒−𝑟𝑇

𝑒−𝑟𝑇[𝐸∗(𝐴𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡) ⋅ 𝑄 + �̅�(1 − 𝑄)]
) 

𝜌 − 𝑟 =
1

𝑇
ln (

�̅�

[𝐸∗(𝐴𝑇|𝐷𝑒𝑓𝑎𝑢𝑙𝑡) ⋅ 𝑄 + �̅�(1 − 𝑄)]
) 

𝜌 − 𝑟 =
1

𝑇
ln (

�̅�

[�̅�(1 − 𝐿𝑄 + �̅�(1 − 𝑄)]
) 

𝜌 − 𝑟 =
1

𝑇
ln (

1

[(1 − 𝐿𝑄 + (1 − 𝑄)]
) 

𝜌 − 𝑟 =
1

𝑇
ln (

1

[(𝑃∗(𝐷𝑒𝑓𝑎𝑢𝑙𝑡) − 𝐿𝑄 + (1 − 𝑄)]
) 

𝜌 − 𝑟 =
1

𝑇
ln (

1

1 − 𝐿𝑄
) 

Using a first order Taylor approximation of the right-hand side yields  

𝜌 − 𝑟 ≈
1

𝑇
𝐿𝑄 
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Merton’s Default Model 

The Merton model is a credit risk model used for determining probabilities of bankruptcy. 

Using the notation above, bankruptcy implies  �̅� > 𝐴𝑇 with the following payoff 

State �̅� > 𝐴𝑇 �̅� < 𝐴𝑇 

Shareholder �̅� − 𝐴𝑇 0 

Debt holder �̅� 𝐴𝑇 

 

Since shareholders are interested in maximizing their value of equity and minimizing the 

payments to debtholders, the debtholders will receive the smallest payment they are entitled 

to. Therefore, firm’s balance sheet becomes 

Assets Liabilities 

𝐴𝑇 𝐵𝑇 = min(𝐴𝑇 , �̅�) 

 𝐸𝑇 = max(𝐴𝑇 − �̅�, 0) 

Total: 𝐴𝑇 Total: min(𝐴𝑇 , �̅�) + max(𝐴𝑇 − �̅�, 0) =

𝐴𝑇 

 

The firm’s equity 𝐸𝑇 is then seen to resemble a call option on the firm’s assets 𝐴𝑇. The 

market value of debt at time 𝑇 can be rewritten as 

𝐵𝑇 = min(𝐴𝑇 , �̅�) 

𝐵𝑇 = �̅� + min(𝐴𝑇 − �̅�, 0) 

Using the max operator property −max(𝑎, 𝑏) = min(−𝑎,−𝑏), we arrive at 

𝐵𝑇 = �̅� − max(�̅� − 𝐴𝑇 , 0) 

The payoff of the debtholders will then resemble a portfolio of a written put option and a time 

0 risk-free loan of �̅�𝑒−𝑟𝑇 that pays �̅� at maturity. 
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Using this information, we can rewrite the time 𝑡 balance sheet as 

Assets Liabilities 

𝐴𝑡 𝐵𝑡 = �̅�𝑒
−𝑟(𝑇−𝑡) − 𝑃(𝐴𝑡 , �̅�, 𝑇 − 𝑡) 

- 𝐸𝑇 = 𝐶(𝐴𝑡 , �̅�, 𝑇 − 𝑡) 

Total: 𝐴𝑇 Total: �̅�𝑒−𝑟(𝑇−𝑡) − 𝑃(𝐴𝑡 , �̅�, 𝑇 − 𝑡) +

𝐶(𝐴𝑡 , �̅�, 𝑇 − 𝑡) 

 

So, to find the time 𝑡 value of debt, we can use the Black-Scholes put option formula with 

underlying 𝐴𝑡 and strike �̅� to find its value. This formula is  

𝐵0 = �̅�𝑒−𝑟
(𝑇−𝑡)−𝑃(𝐴𝑡, �̅�, 𝑇 − 𝑡) 

𝐵0 = �̅�𝑒
−𝑟(𝑇−𝑡) − �̅�𝑒−𝑟(𝑇−𝑡)𝑁(−𝑑2) + 𝐴0𝑒

−𝛿(𝑇−𝑡)𝑁(−𝑑1) 

𝐵0 = �̅�𝑒−𝑟
(𝑇−𝑡)(𝑁(𝑑2))+𝐴0𝑒−𝛿

(𝑇−𝑡)𝑁(−𝑑1) 

 Suppose now that the firm’s assets can be represented by the lognormal process 

𝐴𝑡 = 𝐴0𝑒
(𝑟−𝛿−

1
2
𝜎2)+𝜎√𝑡𝑍

 

Then the probability 𝑃(𝐴𝑡 < �̅�), 𝑡 ∈ [0, 𝑇] is the risk-neutral default probability  

𝑃(𝐴𝑡 < �̅�) = 𝑁(−𝑑2) 

𝑄 = 𝑁(−𝑑2) 

𝑑2 =
ln(𝐴𝑡) − ln �̅� + [𝛼 − 𝛿 −

1
2
𝜎2] (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
− 𝜎√𝑇 − 𝑡 

Here, we found the default probability using the results from chapter 10. Similarly, the 

expected recovery rate is  
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𝑅 =
𝐸∗(𝐴𝑇|𝐴𝑇 < �̅�)

�̅�
 

𝑅 =
𝐸∗(𝐴𝑇|𝐴𝑇 < �̅�)

�̅�
 

𝑅 = 𝐴𝑡𝑒
(𝑟−𝛿)(𝑇−𝑡) ⋅

𝑁(−𝑑1)

�̅�𝑁(−𝑑2)
 

𝑑1 = 𝑑2 + 𝜎√𝑇 − 𝑡 

Using that the forward price on the asset is  

𝐹𝑡,𝑇 = 𝐴𝑡𝑒
(𝑟−𝛿)(𝑇−𝑡) 

We write 

𝑅 =
𝐹𝑡,𝑇(𝐴)𝑁(−𝑑1)

�̅�𝑁(−𝑑2)
 

Then the loss given default is 

𝐿 = 1 − 𝐸∗(𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒) 

𝐿 =
�̅�𝑁(−𝑑2) + 𝐹𝑡,𝑇(𝐴)𝑁(−𝑑1)

�̅�𝑁(−𝑑2)
 

Credit Ratings 

Credit ratings provide a measure for the credit risk for bonds. These measures are often 

provided by third parties that attempt to measure the probability of default on a bond. 

Examples of such third parties are Standard and Poor’s, Moody’s, and Fitch. Each rating 

organization uses a similar rating system. Moody’s ratings are designated as Aaa, Aa, A, 

Baa, Ba, B, Caa, Ca, C where Aaa is a high quality bond with very low default probabilities 

while bonds that are given the rating C are estimated to have a large default probability.  

Over time, we would expect bonds to change ratings depending on their performance. We 

can calculate the probability of a ratings transition using a transition matrix which is a 

matrix of transition probabilities. One example is the following  



82 
 

 

To give some examples of how the matrix is used 

• The one-period probability that a AAA rated bond remains AAA rated is 87.91% 

• The one-period probability that an AA rated bond transitions to a BBB rated bond is 

0.53% 

Suppose that the transition matrix with 𝑛 possible ratings is constant over time. That is, the 

probabilities remain unchanged for each period. Let 𝑝(𝑖, 𝑡 ; 𝑗, 𝑡 + 𝑠) denote the probability 

that a firm with the rating on row 𝑖 on time 𝑡 will move to the rating in column 𝑗 over an 𝑠-year 

time horizon. Then, this transition probability can be expressed as 

𝑝(𝑖, 𝑡 ; 𝑗, 𝑡 + 𝑠) = ∑𝑝(𝑖, 𝑡 ; 𝑘, 𝑡 + 𝑠 − 1) ⋅ 𝑝(𝑘, 𝑡 + 𝑠 − 1 ; 𝑗, 𝑡 + 𝑠)

𝑛

𝑘=1

 

Credit Default Swaps 

A single-name credit default swap (CDS) is an insurance contract on a bond. The seller of 

this contract, the protection seller, must pay the buyer, the protection buyer, when the 

reference bond experiences a credit event such as a default.  The payoff for the buyer of the 

CDS given default is 

𝐶𝐷𝑆 𝑃𝑎𝑦𝑜𝑓𝑓 = �̅� − 𝐵𝑡 

The payment convention of a CDS is either an upfront payment at time 0 or an annual 

premium, or both. To price the CDS, we make use of the fact that a portfolio of a CDS and a 

risky bond should approximately equal a risk-free bond. Let the upfront premium of the CDS 

be denoted as 𝐶𝐷𝑆0, then  

�̅�𝑒−𝑟𝑇 = 𝐶𝐷𝑆0 + �̅�𝑒
−𝑦𝑇  
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Tranched Structures 

Financial institutions such as banks acquire assets that cannot be sold easily. Examples of 

such assets are individual mortgages and auto loans. To overcome this problem, institutions 

pool such assets together and create securities based on portfolios of individual assets. This 

process is called securitization. One example of a security created from securitization is the 

asset backed security, which is roughly defined as a security that generates cash flows 

based on a pool of other (financial) assets. The asset backed security is an example of a 

structure. The structure defines how the claims on the security are distributed among its 

investors. When the pool of assets is securitized, the security can be structured such that the 

cash flows from the individual assets depend on which claim the investor has on the 

securitized asset. This allows the financial institution to prioritize some investors with regards 

to the cash flows from the securitized asset. A structure of this kind is referred to as a 

tranched structure.  

An example of a tranched structure is the collateralized debt obligation (CDO), which is a 

structure that repackages the cash flow from a pool of assets. The CDO is created by 

creating the pool of assets and then issuing tranched financial claims on the securitized 

asset. The motivation for holding CDOs are many. One reason is to get rid of numerous 

individual assets. By pooling these assets into a CDO, the institution can sell off the assets. 

Second, regulations may require an investor to hold an arbitrary amount of investment-grade 

bonds. Since CDOs are essentially a portfolio of risky assets, a large pool of assets will 

diversify its risk, effectively creating an investment-grade bond. One common tranched 

structure is to divide the investors into three tranches. The senior tranche consists of the 

investors that receive the first claim on the cash flows from the bonds. This tranche is the 

least risky. The mezzanine tranche receives the second claim after the investors in the 

senior tranche has been paid. Whatever is left is paid out to the equity tranche. Investors in 

the equity tranche take on the highest risk of the three types of investors.  

 

 

 

 

 


