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1 Do-file 

 

 
 
2 Understanding Abstracts  
 

A) From this abstract I expect that a version of the following models has been 
estimated.  
 

𝑆𝑇𝐸𝑀! = 𝛽" + 𝛽#𝑀𝑎𝑡ℎ𝑅𝑎𝑛𝑘! + 𝑢! 				(1) 
 

𝐴𝑟𝑡𝑠𝐴𝑛𝑑𝑆𝑜𝑐𝑖𝑎𝑙𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠! = 𝛽" + 𝛽#𝑀𝑎𝑡ℎ𝑅𝑎𝑛𝑘! + 𝑢! 				(2) 
 

𝑆𝑇𝐸𝑀! = 𝛽" + 𝛽#𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝑅𝑎𝑛𝑘! + 𝑢! 				(3) 
 

𝐴𝑟𝑡𝑠𝐴𝑛𝑑𝑆𝑜𝑐𝑖𝑎𝑙𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠! = 𝛽" + 𝛽#𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝑅𝑎𝑛𝑘! + 𝑢! 				(4) 
 

Here I have first reported the simple linear regression models that I expect has been 
estimated. In the abstract they state that they find that a higher rank in math 
increases the likelihood of choosing STEM and decrease the likelihood of choosing 
Arts and Social Sciences. From this we can tell that they have estimated the effect of 
math rank on the students’ preferences rankings for both STEM and Arts and Social 
Sciences. This I have reported in regression functions (1) and (2). In regression 
function (1) we expect the estimation of 𝛽# to be positive since they found that 
higher math rank increases the likelihood of choosing STEM, and in regression 
function (2) we expect the estimation of 𝛽# to be negative since they found that 
higher math rank decreased the likelihood of choosing Arts and Social Sciences.  
 
Next, they state that a higher rank in English leads to an increase in the probability of 
choosing Arts and Social Sciences and decrease the probability of choosing STEM. 
From the we can tell that they have estimated the effect of English rank on the 
students’ preferences rankings for both STEM and Arts and Social Sciences. This I 
have reported in regression functions (3) and (4). We expect the estimation of 𝛽# in 
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regression function (3) to be negative since they found that a higher rank in English 
decreased the probability of choosing STEM. In regression function (4) we expect the 
estimation of 𝛽# to be positive sine they found that a higher English rank increased 
the probability of choosing Arts and Social Sciences.  
 
I expect this dataset to be a cross-section. This is because there is no mention of a 
time frame, and in the first sentence they state that they use unique data on 
preference rankings for all high school students who apply for college students in 
Ireland. Given that this is only done at one point in time, the data would take the 
form of a cross-sectional dataset.  
 
An alternative or addition to the simple linear regression models I have reported 
above is the following multiple linear regressions.  
 
 

𝑆𝑇𝐸𝑀! = 𝛽" + 𝛽#𝑀𝑎𝑡ℎ𝑅𝑎𝑛𝑘! + 𝛽$𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝑅𝑎𝑛𝑘! + 𝛽%𝑏𝑜𝑦! + 𝑢! 				(5) 
 

𝐴𝑟𝑡𝑠𝐴𝑛𝑑𝑆𝑜𝑐𝑖𝑎𝑙𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠!
= 𝛽" + 𝛽#𝑀𝑎𝑡ℎ𝑅𝑎𝑛𝑘! + 𝛽$𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝑅𝑎𝑛𝑘! + 𝛽%𝑏𝑜𝑦! + 𝑢! 				(6) 

 
In these models’ boy is a dummy variable to capture average differences between 
boys and girls.  
 

B) From this abstract I would expect the following simple linear regression models to be 
estimated.  
 

𝐹𝑖𝑟𝑠𝑡𝑌𝑒𝑎𝑟𝐺𝑟𝑎𝑑𝑒𝑠!& = 𝛽" + 𝛽#𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔𝑇𝑜𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟!& + 𝑢!&				(7) 
 

𝑃𝑟𝑜𝑏𝐹𝑢𝑙𝑙𝐶𝑜𝑢𝑟𝑠𝑒𝐿𝑜𝑎𝑑!& = 𝛽" + 𝛽#	𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔𝑇𝑜𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟!& + 𝑢!&				(8) 
 

𝑇𝑖𝑚𝑖𝑛𝑔𝑀𝑎𝑗𝑜𝑟𝐶ℎ𝑜𝑖𝑐𝑒!& = 𝛽" + 𝛽#𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔𝑇𝑜𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟!& + 𝑢!&			(9) 
 
The reason why I expect the independent variable to be shifting to a semester 
(ShiftingToSemester) is because they in the last sentence report the effect of shifting 
to a semester on different variables. The variables are first-year grades 
(FirstYearGrades), probability of enrolling in full course load (ProbFullCourseLoad), 
and timing of major choice (TimingMajorChoice). Since they are estimating the effect 
of shifting to a semester on these variables, these would be the dependent variables. 
They report that the estimated effect shifting to a semester is lower first year grade, 
and thus the 𝛽# in regression function (7) would be negative. The effect of shifting to 
a semester is also estimated to be negative on both probability of enrolling in full 
course load and the timing of major choice, and thus we expect 𝛽# to be negative in 
the sample regression function of regressions (8) and (9).  
 
In the abstracts second sentence they say that they have used panel data. This is also 
what we would expect as they are estimating the effect of an event on different 
variables. It would therefore be appropriate to use a panel dataset since this would 
give observation both before and after the event.  



10050 SØK1005 27.05.2021 

 
 
3 Estimation in Stata 
 

A) The task asks us to estimate the effect of education on log-wages, and accounting for 
the effect of mother’s and father’s education and residence in an urban area. The 
population regression function will be as follows.  
 

𝑙𝑤𝑎𝑔𝑒 = 𝛽" + 𝛽#𝑒𝑑𝑢𝑐 + 𝛽$𝑚𝑜𝑡ℎ𝑒𝑑𝑢𝑐 + 𝛽%𝑓𝑎𝑡ℎ𝑒𝑑𝑢𝑐 + 𝛽'𝑢𝑟𝑏𝑎𝑛 + 𝑢 
 
Doing the regression in Stata we get the following result.  
 

 
 
The sample regression function is thus:  
 

𝑙𝑤𝑎𝑔𝑒Q = 1.023523 + 0.0693345𝑒𝑑𝑢𝑐 + 0.0202912𝑚𝑜𝑡ℎ𝑒𝑑𝑢𝑐
+ 0.0148721𝑓𝑎𝑡ℎ𝑒𝑑𝑢𝑐 + 0.1010183𝑢𝑟𝑏𝑎𝑛 

 
Next, we interpret the results. The everything else equal effects are:  
 
- It is estimated that increasing education by one year (seems to be years looking 

at the data) will increase hourly wage by 6.93%. It should also be mentioned here 
that education is reported as highest completed by 1991. Same goes for mother’s 
and father’s education. 

- A one-year increase in mother’s education is estimated to increase wage by 
2.03%.  

- Similarly, are a one-year increase in father’s education estimated to increase 
wages by 1.49%.  

- It is estimated that living in an urban area will on average increase wages by 
10.10%. This is the case that the urban-dummy equals 1.  

- Lastly, we have the constant. This is the estimated log-wage in the case that 
education, mother’s education, and father’s education all equal 0, and we are 



10050 SØK1005 27.05.2021 

outside an urban area. The log-wage is 1.023523, giving and expected hourly 
wage of $2.78 (𝑒#."$%)$% = 2.782981). 

 
B) We are going to test if there is evidence of a wage differential in urban areas and 

non-urban areas. To do this we will choose the null hypothesis that there is no 
difference and the alternative hypothesis that there is difference. This can be 
formulated as following.  
 

𝐻": 𝛽' = 0 
 

𝐻#: 𝛽' ≠ 0 
 
Since this is a single hypothesis test, we are using a t-test. The test statistic is as 
follows under the null hypothesis.  
 

𝑇𝑆 =
𝛽'W− 𝛽'
𝑠𝑒Y𝛽'WZ

=
𝛽'W− 0
𝑠𝑒Y𝛽'WZ

= 1.58 

 
The number of observations is 496 and we have 4 variables, and thus the test statistic 
is distributed as 𝑡 − 𝑠𝑡𝑎𝑡 ∼ 𝑡'*# under the null hypotheses. The p-value Stata reports 
for the urban-dummy is 0.114. This means that the probability of observing such a 
test statistic under the null hypotheses is 11.4%. We can show this graphically.  
 

 
 
Under the null hypothesis the probability of landing in the white area is 88.6% and 
the probability of landing in the blue area is 11.4%. This is what the p-value is, it 
reports the probability of observing a test statistic as extreme under the null 
hypothesis.  
 
The usual confidence intervals we use are 10%, 5% and 1%. These would all mean 
observing a test statistic that is more unlikely than the one we have observed, since 
we had the p-value 0.114. In other words, are we not able to reject the null 
hypothesis at any of these significance levels, but we would have been able to reject 
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the null hypothesis at an 11.4% significance level. However, we can conclude that 
there is not sufficient evidence to say that there are different wages in urban areas, 
even though there is some evidence for it.  
 

C) We are now going to test if mothers and father education has a jointly significant 
effect on wages. To do this we choose the null hypothesis that they are not jointly 
significant, and the alternative hypothesis that they are not. This can be formulated 
as follows.  
 

𝐻": 𝛽$ = 𝛽% = 0 
 

𝐻#: 𝑛𝑜𝑡	𝐻" 
 
The test statistic for the joint hypothesis test, called F-statistic can be defined in two 
ways: 
 

𝐹 − 𝑠𝑡𝑎𝑡 =
𝑆𝑆𝑅+ − 𝑆𝑆𝑅,

𝑆𝑆𝑅,
⋅
𝑛 − 𝑘 − 1

𝑞  

 

𝐹 − 𝑠𝑡𝑎𝑡 =
𝑅,$ − 𝑅+$

1 − 𝑅,$
⋅
𝑛 − 𝑘 − 1

𝑞  

 
The distribution of this F-statistic is 𝐹 − 𝑠𝑡𝑎𝑡 ∼ 𝐹$;'*#. We have the nominator 
degrees of freedom equal to 2 because we have 2 restrictions in the restricted 
model, and the denominator degrees of freedom equal to 491 since we have 496 
observations and 4 variables in the unrestricted model. We can now check the tables 
to find the critical value and define a rejection region for this test.  
 

𝐹 − 𝑠𝑡𝑎𝑡 > 2.9957 
 
Graphically we can see this as the F-statistic having to exceed approximately 3, and 
thereby being in the blue are.  
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We will perform both the tests, however they should both give the same result. The 
result from Stata when estimating the restricted model is as following.  
 

 
 

𝑙𝑤𝑎𝑔𝑒Q = 1.210796 + 0.0865828𝑒𝑑𝑢𝑐 + 0.1264772𝑢𝑟𝑏𝑎𝑛 
 
Next, we calculate the F-statistic.  
 
 

𝐹 − 𝑠𝑡𝑎𝑡 =
𝑆𝑆𝑅+ − 𝑆𝑆𝑅,

𝑆𝑆𝑅,
⋅
𝑛 − 𝑘 − 1

𝑞 =
135.565059 − 132.853143

132.853143 ⋅
491
2 = 5.01 

 

𝐹 − 𝑠𝑡𝑎𝑡 =
𝑅,$ − 𝑅+$

1 − 𝑅,$
⋅
𝑛 − 𝑘 − 1

𝑞 =
0.1636 − 0.1464
1 − 0.1636 ⋅

491
2 = 5.04 

 
The difference in the results is due to rounding (or typing) errors. However, the result 
from both tests exceeds the critical value of 2.9957. Thus, we can reject the hull 
hypothesis that mother’s and father’s education does not influence wages at a 5% 
significance level. In other words, do we have sufficient evidence to suggest that 
mother’s and father’s educations have a jointly statistically significant effect on 
wages.   
 

D) By looking at the Stata output window we see that mother’s education has a t-
statistic of 1.63 and father’s education has a t-statistic of 1.64. This means that if we 
were to perform a test on either of them being individually statistically significant 
that would be the result from the t-test. The p-values are respectively 0.104 and 
0.102 for mother’s and father’s education. This means that the probability of 
observing such t-statistics for mother’s and father’s educations under the null 
hypothesis is just above 10% for both. We would thus not be able to reject either if 
we had performed a test at a 10%, 5% or 1% significance level. Based on this we can 
conclude that neither mother’s nor father’s education has an individually statistically 
significant effect on wages.  
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E) The results we have contained in task C) and D) are compatible. The reason for this 
can intuitively be explained by using a Ballentine-diagram.  

 
 
Here we see that the partialled out effect of mothers of mother’s education on lwage 
is the blue area, and the partialled out effect of father’s education on lwage is the 
pink are. When we are performing the individual tests, we are only testing these two 
areas individually, but when we are doing the joint test, we are including the yellow 
area as well as both the blue and pink. This we can do because we do not care if the 
effect is caused by mother’s or father’s education, only if it is caused by them jointly 
or at least of them. We are testing the total effect of the two variables. We can see 
from this that doing the joint test has a bigger explanatory momentum on lwage, and 
especially of the correlation is big. That is if the overlapping effect of mother’s and 
father’s education (the yellow area) is large.  
 
Correlation is a key thing here. Because having high correlation between explanatory 
variable makes the variance inflation factor (VIF) big, and this makes the standard 
error of the coefficient big. The reason for this is that when the variables are highly 
correlated it becomes difficult to precisely estimate the effect of a single variable. 
The variance of a coefficient is given by the following expression. 
 

𝑉Y𝛽.̀Z =
𝜎$

𝑆𝑆𝑇/
⋅

1
1 − 𝑅/$

=
𝜎$

𝑆𝑆𝑇/
⋅ 𝑉𝐼𝐹 

 
When the correlation increases R-squared between the explanatory variables 
increases and the VIF increases. Oppositely, when the correlation decreases the R-
squared between the explanatory variables decreases and the VIF decreases.  
 
The problem with having a high VIF, and thus a high variance and standard error is 
that it becomes difficult to reject the null hypothesis when doing individual testing. It 
is important to note here that this does not make the variance biased, only 
imprecise. When we do joint tests, we can walk around this problem as we are not 
interested in the individual effect but the joint effect. This means as I explained to 
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begin with that, we can also include the area that represents the joint effect in the 
test, making it easier to reject the null hypothesis.  
 
To sum up, we have that if mothers and father education has a high correlation the 
answers from task C) and D) are compatible. We can expect mother’s and father’s 
education to have some correlation as many meet the people they get together with 
in an age where one might be studying or working, and thus meeting a lot of people 
in similar fields. We can check the correlation between the two variables in Stata as 
well.  
 

 
 
We see that the variables have quite a high correlation of 0.5729.  
 

 
4 Interpretation of an empirical analysis 
 

A) Column to reports the effects of log health expenditures and log unemployment on 
log circulatory disease. The table reports that the expected effect of a 1% increase in 
health expenditures is a 0.436% increase in circulatory diseases, everything else 
equal. Next, we have that a 1% increase in the unemployment rate is estimated to 
increase circulatory diseases with 0.265%.  
 

B) The R-squared is defined as follows.  
 

𝑅$ =
𝑆𝑆𝐸
𝑆𝑆𝑇 , 0 ≤ 𝑅$ ≤ 1 

 
The R-squared is the explained sum of squares over the total sum of squares. They 
are defined as following.  
 

𝑆𝑆𝑇 =e(𝑦! − 𝑦f)$
0

!1#

 

 

𝑆𝑆𝐸 =e(𝑦g! − 𝑦fh)$
0

!1#

 

 
The total sum of squares is the total variance in y and the explained sum of squares is 
the variance in y that is explained by x or x’s. This means that in the model with a 
higher R-squared, more of the variance in the log circular diseases is explained by the 
explanatory variables. However, this is not what The Department of Health should 
think about when they are deciding which model to use.  
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What they should really care about is which model better predicts the effect of 
health expenditures on circular diseases. For the model to unbiasedly (and precisely) 
predict the effect of health expenditures they need MLR1-MLR6 to hold. MLR1-MLR3 
is that the model needs to be linear in parameters, the sampling of observations 
needs to be random and there needs to be enough variation in the x’s (𝑉(𝑥!) ≠ 0). 
Since we cannot observe the dataset, there is not much we can say about these 
assumptions.  
 
The more interesting to discuss in this case is MLR4, the zero conditional mean 
assumption (𝐸(𝑢!|𝑥!) = 0). This assumption states that the expected value of the 
error term should be zero and that the independent variable should be uncorrelated 
with the error term. The expected value of the error term, or the expected value of 
the residuals which is our closest estimate of the error term, is zero. This we know 
because if it is not zero, we can fix this simply by moving the intersect up and down. 
The second part of the assumption is usually the more challenging. This is that the 
independent variable should be uncorrelated with the error term. Normally, since we 
normally don’t know the population regression function, this is an assumption that is 
difficult not to break. In our case we have that even though this assumption is 
probably broken in both the models, the model in column (2) is doing a better job at 
trying to minimize this. That is because unemployment is likely to be correlated with 
both health expenditures and circulatory diseases, meaning that excluding it in model 
(1) will give a biased result. Having a lot of circulatory diseases in a community will 
probably increase the number of unemployed and increase health expenditures. 
Another variable that might be related to both are age of population, if we assume 
that older people might have higher health expenditures and are more likely to 
experience circulatory diseases.  
 
Next, we have MLR5 and MLR6. MLR5 is homoskedasticity assumption (𝑉(𝑢!|𝑥!) =
𝜎$). This is the assumption that variance in the error term should not vary across 
different values of the independent variable. Since breaking this assumption does not 
really make a bias in the estimation it is not that important here. Finally, we have 
MLR6 the assumption of normality in the error term. This assumption encompasses 
MLR4 and MLR5 and will be broken if either of those are broken.  
 
To sum up, the important thing when choosing a model is choosing the best model 
that best predicts the parameter of interest. This means that one should choose the 
model that unbiasedly predicts the effect of health expenditures, and to do that the 
assumptions mentioned above need to hold. The R-squared is not what one should 
be fixated on, because it only tells how much of the total variance in the dependent 
variable is explained by the independent variables. This is different from unbiasedly 
predicting an effect, because in addition to having several explanatory variables we 
need to include the right explanatory variables not to break assumption 4. However, I 
would agree that model (2) is better because it includes one more explanatory 
variable, and thus is a little better than model (1). Still both models are probably 
biased as there are several other important variables that are missing from both, for 
example age. This means that The Department of Health should be careful with 
making policy based on either model.  
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C) Including a set of dummy-variables, one for each municipality would maybe 

strengthen the explanatory power of the model. This would be because one would 
be able to capture the effect that different municipalities might have different 
average per capita circulatory diseases. The reason for doing this would essentially be 
to reduce the risk of breaking assumption 4 as explained above. 
 
However, I do not really believe that there is a strong correlation between which 
municipality you live in and circulatory diseases and health expenditures. This is 
because the differences in municipalities that might affect both circular diseases and 
health expenditures not really are because of the specific municipality, but rather 
other factors that might better be captured in their own variable. Such variables 
might be average age of the population, wealth of population, and diet. The age has 
an effect because higher age is increasing the probability of circulatory disease and it 
is more likely that you need medical help. Diet also effect the risk of diseases and the 
amount of money spent on health expenditures.  

 
 
5 Theory question 
 
To address the problem, we will start with fixating the population regression model the 
young econometricians are trying to estimate.  
 

𝐶𝑜𝑣𝑖𝑑𝐶𝑎𝑠𝑒𝑠 = 𝛽" + 𝛽#𝑃𝑟𝑒𝑐𝑒𝑛𝑐𝑒𝑂𝑓5𝐺 + 𝑢 
 
The problem they are facing is that they only have observations of the covid cases when the 
number of cases exceeds 10 000. Even though this model presents several OLS estimator 
issues we will start by looking at the issue at hand. Only having observations when y > 10 000 
breaks assumption 2 of random sampling and will cause the estimator to become biased and 
less precise. The reason why we are breaking the random sampling assumption is that the 
probability of each country being selected is not equal when one only can include countries 
with more than 10 000 covid cases. In addition, the number of observations will decrease. 
 
The expected result of such a bias if the real 𝛽# is positive is a downward bias, and the 
expected result if the real 𝛽# is negative is an upward bias. This is because when we exclude 
the smaller observations when 𝛽# is positive we will get a less steep curve with a higher 
intersect. When 𝛽# is negative we will get a less steep curve as well, but now with a lower 
intersect. In addition, the standard error will increase, because the sample will get smaller.  
 
Either way, the estimated effect of 𝛽# will be biased. This can be shown by using Monte 
Carlo simulations, as we did in assignment 3, and this is a good aid in ascertain the 
properties of the OLS estimators. In a Monte Carlo simulation one decides the true 
population regression function and based on this draw many samples with many 
observations. Doing a regression on each sample one can calculate the average effect of the 
parameters, and thus showing that they do in fact deliver the unbiased results on average. In 
addition, one can on purpose break different assumptions to show how they alter the 
results. This way, one can visually get an idea of the importance of the assumptions.  
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In addition to breaking assumption 2, it is very clear that they are also breaking assumption 
4. That is because there are many variables that might be related both to the number of 
covid cases and the presence of 5G network. One thing is population density. If the 
population density is high the number of covid cases is likely to increase both relatively and 
numerally. That is because many people together in a smaller place has a better potential for 
exponential spread, and it is more cost efficient to build out the 5G network in place where 
many people can use it per square kilo meter.  
 
 


