Assessment guidelines SØK2012 H18

The grade is based on an overall assessment, so the points are only indicative.

1. (a) Answer: When 10 is the reference point, the price movement is considered as a change in gains:

$$
v(2)-v(7)=1-3.5=-2.5 .
$$

(b) Answer: When 17 is the reference point, the price movement is considered a change in losses:

$$
v(-5)-v(0)=-10-0=-10 .
$$

(c) Answer: Benice.

Since questions (a) and (b) were about size of loss, absolute values are also accepted.
2. (a) Answer: Your utility $U^{0}(\boldsymbol{u})$ of utility streams $\left\langle u_{0}, u_{1}, u_{2}, \ldots\right\rangle$ from the point of view of time 0 is:

$$
\begin{aligned}
U^{0}(\boldsymbol{u})= & u_{0}+\delta u_{1}+\delta^{2} u_{2} \ldots \\
U^{0}(A) & =3 \\
U^{0}(B) & =\frac{1}{2} 4=2 \\
U^{0}(C) & =\left(\frac{1}{2}\right)^{2} 7=1 \frac{3}{4}
\end{aligned}
$$

You therefore choose A.
(b) Answer: Your utility $U^{0}(\boldsymbol{u})$ of utility streams $\left\langle u_{0}, u_{1}, u_{2}, \ldots\right\rangle$ from the point of view of $t=0$ is:

$$
U^{0}(\boldsymbol{u})=u_{0}+\beta \delta u_{1}+\beta \delta^{2} u_{2} \ldots
$$

At time 0, the utility of the alternatives are:

$$
\begin{aligned}
& U^{0}(A)=3 \\
& U^{0}(B)=\frac{1}{2} \times 1 \times 4=2 \\
& U^{0}(C)=\frac{1}{2} \times 1 \times 7=3 \frac{1}{2}
\end{aligned}
$$

You therefore drop A and plan to choose C.
At time 1, the utility of the alternatives are:

$$
\begin{aligned}
U^{1}(B) & =4 \\
U^{1}(C) & =\frac{1}{2} \times 1 \times 7=3 \frac{1}{2} .
\end{aligned}
$$

So you forego C and choose B.
(c) Answer: From the point of view of time 1, you know you will drop C, so from the point of view of time 0 , your choices are between A and B , so you choose A .
3. (a) Answer: Let $\operatorname{Pr}(T)=\frac{1}{10000}=1-\operatorname{Pr}(\neg T), \operatorname{Pr}(H \mid T)=\frac{9}{10}$, and $\operatorname{Pr}(H \mid \neg T)=\frac{1}{10}$. Then:

$$
\operatorname{Pr}(H \& T)=\operatorname{Pr}(H \mid T) \times \operatorname{Pr}(T)=\frac{9}{10} \times \frac{1}{10000}=0.00009
$$

(b) Answer:

$$
\operatorname{Pr}(H \& \neg T)=\operatorname{Pr}(H \mid \neg T) \times \operatorname{Pr}(\neg T)=\frac{1}{10} \times \frac{9999}{10000}=0.09999
$$

(c) Answer: By the rule of total probability:

$$
\begin{aligned}
\operatorname{Pr}(H) & =\operatorname{Pr}(H \& T)+\operatorname{Pr}(H \& \neg T) \\
& =\frac{9}{10} \times \frac{1}{10000}+\frac{1}{10} \times \frac{9999}{10000} \\
& =\frac{10008}{100000}=0.00009+0.09999=0.10008
\end{aligned}
$$

(d) Answer: By Bayes rule:

$$
\begin{aligned}
\operatorname{Pr}(T \mid H) & =\frac{\operatorname{Pr}(H \mid T) \times \operatorname{Pr}(T)}{\operatorname{Pr}(H)} \\
& =\frac{0.00009}{0.10008} \approx 0.0009
\end{aligned}
$$

(e) Answer: Base rate neglect.
4. (a) i. Answer: A Nash equilibrium is found as the strategy profile such that each strategy in the profile is a best response to the other strategies in the profile. Here that will be $\langle U, L\rangle$ and $\langle D, R\rangle$.
ii. Answer: Let the probability that Player 1 plays U be $p=$ $\operatorname{Pr}(U)=1-\operatorname{Pr}(D)$. The probability depends upon the mixed strategy of Player 2. This must be where Player 2 is indifferent between L and R in terms of expected payoffs:

$$
\begin{aligned}
E u(L) & =E u(R) \\
2 \times p+0 \times(1-p) & =1 \times p+1 \times(1-p) \\
2 \times p & =1 \\
p & =\frac{1}{2} .
\end{aligned}
$$

Answer: Let the probability that Player 2 plays L be $q=$ $\operatorname{Pr}(L)=1-\operatorname{Pr}(R)$. The probability depends upon the mixed strategy of Player 1. This must be where Player 1 is indifferent between U and D in terms of expected payoffs:

$$
\begin{aligned}
E u(U) & =E u(D) \\
3 \times q+0 \times(1-q) & =1 \times q+2 \times(1-q) \\
3 \times q & =2-q \\
q & =\frac{1}{2} .
\end{aligned}
$$

Answer: Since the probabilities are assumed to be independent, the expected payoff for Player 1 is:

$$
E u_{1}=\frac{1}{2} \times \frac{1}{2}(3+0+1+2)=\frac{6}{4}=1.5 .
$$

Answer: Since the probabilities are assumed to be independent, the expected payoff for Player 2 is:

$$
E u_{2}=\frac{1}{2} \times \frac{1}{2}(2+1+0+1)=1 .
$$

(b) i. Answer: There are two Nash equilibria $\langle U, L\rangle$ and $\langle D, R\rangle$.
5. Answer: This is covered in Chapter 12 of the textbook.

A very good answer will also include examples and critique.

