Assessment guidelines SØK2012 V19

1. Answer: He promises no changes in taxes, but massive cuts in public services.
2. (a) Answer:Alexa's loss: $v(0)-v(30)=0-15=-15$
(b) Answer: Bob's loss: $v(-30)-v(0)=-60$.
(c) Answer:Bob is most disappointed.
3. (a) Answer: Let H be the hypothesis that the coin has two heads, $\neg H$ that the coin is fair, and E be the coin comes up heads. Using Bayes rule then gives

$$
\begin{aligned}
\operatorname{Pr}(H \mid E) & =\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid H) \times \operatorname{Pr}(H)+\operatorname{Pr}(E \mid \neg H) \times \operatorname{Pr}(\neg H)} \times \operatorname{Pr}(H) \\
& =\frac{1 \times \frac{1}{5}}{1 \times \frac{1}{5}+\frac{1}{2} \times \frac{4}{5}}=\frac{1}{3}
\end{aligned}
$$

(b) Answer:

$$
\operatorname{Pr}(H \mid E)=\frac{1 \times \frac{1}{3}}{1 \times \frac{1}{3}+\frac{1}{2} \times \frac{2}{3}}=\frac{1}{2}
$$

4. (a) Answer: The expected value of the gamble is:

$$
E V(x)=\frac{1}{3} \times 36+\frac{2}{3} \times 9=18
$$

(b) Answer: The expected utility of the gamble is:

$$
E U(x)=\frac{1}{3} \times \sqrt{36}+\frac{2}{3} \times \sqrt{9}=4
$$

(c) Answer: The certainty equivalent $C E$ is found by solving for $C E$ in:

$$
\begin{aligned}
u(C E) & =E U(x) \\
\sqrt{C E} & =4 \\
C E & =16 .
\end{aligned}
$$

(d) Answer: She is risk averse because the certainty equivalent is smaller than the expected value.
(e) Answer: The expected utility of the gamble is:

$$
E U(x)=\frac{1}{3} \times 36^{2}+\frac{2}{3} \times 9^{2}=486
$$

(f) Answer: The certainty equivalent $C E$ is found by solving for $C E$ in:

$$
\begin{aligned}
u(C E) & =E U(x) \\
C E & =\sqrt{486} \\
C E & \approx 22.05
\end{aligned}
$$

(g) Answer: She is risk prone because the certainty equivalent is bigger than the expected value.
5. (a) Answer: From the point of view of time 0:

$$
\begin{aligned}
& U^{0}(\boldsymbol{A})=0+\frac{2}{3} \times 0+\left(\frac{2}{3}\right)^{2} \times 18=8 \\
& U^{0}(\boldsymbol{B})=0+\frac{2}{3} \times 6+\left(\frac{2}{3}\right)^{2} \times 0=4
\end{aligned}
$$

(b) Answer: From the point of view of time 1:

$$
\begin{aligned}
& U^{1}(\boldsymbol{A})=0+\frac{2}{3} \times 18=12 \\
& U^{1}(\boldsymbol{B})=6+\frac{2}{3} \times 0=6
\end{aligned}
$$

(c) Answer: From the point of view of time 0:

$$
\begin{aligned}
& U^{0}(\boldsymbol{A})=0+\frac{1}{3} \times 1 \times 0+\frac{1}{3} \times 1 \times 18=6 \\
& U^{0}(\boldsymbol{B})=0+\frac{1}{3} \times 1 \times 6+\frac{1}{3} \times 1 \times 0=2
\end{aligned}
$$

(d) Answer: From the point of view of time 1:

$$
\begin{aligned}
& U^{1}(\boldsymbol{A})=0+\frac{1}{3} \times 1 \times 18=6 \\
& U^{1}(\boldsymbol{B})=6+\frac{1}{3} \times 1 \times 0=6
\end{aligned}
$$

(e) Answer: Hop is most likely to experience regret, because at time 2 it is no longer possible to prepare for the exam.
6. (a) Answer: Let The probability that Player 1 plays U be $p=$ $\operatorname{Pr}(U)=1-\operatorname{Pr}(D)$. The probability depends upon the mixed strategy of Player 2. This must be where Player 2 is indifferent between L and R in terms of expected payoffs:

$$
\begin{aligned}
E u(L) & =E u(R) \\
5 \times p+1 \times(1-p) & =1 \times p+3 \times(1-p) \\
1+4 \times p & =3-2 \times p \\
6 p & =2 \\
p & =\frac{1}{3} .
\end{aligned}
$$

(b) Answer: Let the probability that Player 2 plays L be $q=\operatorname{Pr}(L)=$ $1-\operatorname{Pr}(R)$. The probability depends upon the mixed strategy of Player 1. This must be where Player 1 is indifferent between U and D in terms of expected payoffs:

$$
\begin{aligned}
E u(U) & =E u(D) \\
5 \times q+1 \times(1-q) & =1 \times q+3 \times(1-q) \\
1+4 \times q & =3-2 \times q \\
6 \times q & =2 \\
q & =\frac{1}{3} .
\end{aligned}
$$

Alternatively: since the payoffs are the same, the probabilities must be the same.
7. Answer: Good answers will include explanations of: framing effects, endowment effects, loss aversion, value function, integration and segregation, and probability weighting.

